37 research outputs found

    Dangerous Science

    Get PDF
    The public is generally enthusiastic about the latest science and technology, but sometimes research threatens the physical safety or ethical norms of society. When this happens, scientists and engineers can find themselves unprepared in the midst of an intense science policy debate. In the absence of convincing evidence, technological optimists and skeptics struggle to build consensus. In these situations, it is best to sidestep the instigating controversy by using a broad risk-benefit assessment as a risk exploration tool to help scientists and engineers accomplish their goals while avoiding physical or moral dangers. Dangerous Science explores the intersection of science policy and risk analysis to determine ways to minimize negative impacts of science and technology on society

    Complexity Heliophysics: A lived and living history of systems and complexity science in Heliophysics

    Full text link
    In this piece we study complexity science in the context of Heliophysics, describing it not as a discipline, but as a paradigm. In the context of Heliophysics, complexity science is the study of a star, interplanetary environment, magnetosphere, upper and terrestrial atmospheres, and planetary surface as interacting subsystems. Complexity science studies entities in a system (e.g., electrons in an atom, planets in a solar system, individuals in a society) and their interactions, and is the nature of what emerges from these interactions. It is a paradigm that employs systems approaches and is inherently multi- and cross-scale. Heliophysics processes span at least 15 orders of magnitude in space and another 15 in time, and its reaches go well beyond our own solar system and Earth's space environment to touch planetary, exoplanetary, and astrophysical domains. It is an uncommon domain within which to explore complexity science. After first outlining the dimensions of complexity science, the review proceeds in three epochal parts: 1) A pivotal year in the Complexity Heliophysics paradigm: 1996; 2) The transitional years that established foundations of the paradigm (1996-2010); and 3) The emergent literature largely beyond 2010. This review article excavates the lived and living history of complexity science in Heliophysics. The intention is to provide inspiration, help researchers think more coherently about ideas of complexity science in Heliophysics, and guide future research. It will be instructive to Heliophysics researchers, but also to any reader interested in or hoping to advance the frontier of systems and complexity science

    Acknowledgements

    Full text link

    Legal Knowledge and Information Systems - JURIX 2017: The Thirtieth Annual Conference

    Get PDF
    The proceedings of the 30th International Conference on Legal Knowledge and Information Systems – JURIX 2017. For three decades, the JURIX conferences have been held under the auspices of the Dutch Foundation for Legal Knowledge Based Systems (www.jurix.nl). In the time, it has become a European conference in terms of the diverse venues throughout Europe and the nationalities of participants
    corecore