1,678 research outputs found

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    The Full ESWAN Destination-Based Approach: Operations And Evaluation

    Full text link
    In response to the growing need to support better than best-effort (BE) quality of service (QoS) in mobile ad-hoc and sensor networks, many QoS models have been proposed. SWAN independent QoS model is introduced to operate on wireless ad-hoc networks. As a cross layer QoS model, SWAN is flexible and may run over any routing protocol or Media Access Control (MAC) layers. SWAN provides some advantages over competitive models However, SWAN is vulnerable to problems related to mobility and false admission. The original SWAN model discusses the two problems as part of a dynamic regulation of real-time flows, and introduced two solutions, namely source and network-based regulation algorithms. This paper criticizes both regulation algorithms and show why destination-based algorithm selects real-time victim flows in a better way. Then we provide test results to analyze and evaluate the destination-based approach

    Predictive preemptive certificate transfer in Cluster-Based Certificate Chain

    Get PDF
    Mobile ad hoc networks are a set of nodes that cooperate and communicate wirelessly. This kind of networks in easy to deploy because there is no need of any pre-existing infrastructure. Security in Manets is a very important issue and it is hard to use conventional security techniques. Many approaches have been proposed to secure communication in Manets; most of them are based of public-key certifications which create a multitude of trust communication model.In this paper, we propose an amelioration of a distributed certificate chain that relies on the cluster based routing protocol. In our scheme, after forming clusters, the cluster-head node issue certificates for other nodes within its cluster. When a member node want migrates to an adjacent cluster, the cluster-head sends the node’s certificate to surrounding cluster-heads via gateway nodes. The protocol was doted by a preemptive predictive module to predict migration intention of member nodes. This approach has been evaluated by detailed simulation study. Simulation results show that this approach is scalable and generate lower certification overhead

    Link Quality and MAC-Overhead aware Predictive Preemptive Multipath Routing Protocol for Mobile Ad hoc Networks

    Get PDF
    In Ad Hoc networks, route failure may occur due to less received power, mobility, congestion and node failures. Many approaches have been proposed in literature to solve this problem, where a node predicts pre-emptively the route failure that occurs with the less received power. However, these approaches encounter some difficulties, especially in scenario without mobility where route failures may arise. In this paper, we propose an improvement of AOMDV protocol called LO-PPAOMDV (Link Quality and MAC-Overhead aware Predictive Preemptive AOMDV).  This protocol is based on new metric combine two routing metrics (Link Quality, MAC Overhead) between each node and one hop neighbor. Also we propose a cross-layer networking mechanism to distinguish between both situations, failures due to congestion or mobility, and consequently avoiding unnecessary route repair process. The LO-PPAOMDV was implemented using NS-2. The simulation results demonstrate the merits of our proposed LO-PPAOMDV with approximately 10-15% increase in the packet delivery ratio while average end-to-end delay is reduced by 20%, and normalized routing load is reduced about 45%, also with 7% increase in the throughput, when compared with PPAOMDV

    Signal Strength Based Congestion Control in In MANET

    Get PDF
    All nodes in MANET (Mobile Ad-hoc Network) are mobile and dynamically connected in an arbitrary manner.  Mobility causes frequent link failure which results in packet losses. TCP assumes that these packet losses are due to congestion only. This wrong assumption requires packet retransmissions till packet arrives successfully at the receiver. Goal is to improve TCP performance by using signal strength based cross layer approach which obviously resolves the congestion. We are reviewing a signal strength based measurements to improve such packet losses and no need to retransmit packets. Node based and link based signal strength can be measured. If a link fails due to mobility, then signal strength measurement provides temporary higher transmission power to keep link alive. When a route is likely to fail due to weak signal strength of a node, it will find alternate path. consequently avoids congestion. We will make changes at MAC routing and routing layer to predict link failure. MANET hits the protocol's strength due to its highly dynamic features, thus in testing a protocol suitable for MANET implementation we have selected two routing protocols AODV and DSR. Packet Delivery Ratio, Packet Drop, Throughput and end to end delay are the metrics used for performance analysis of the AODV routing protocols. Keywords: Congestion  control, Signal strength, TCP performance ,Cross layer interaction, Route discover

    Preemptive Routing & Intrusion Detection for MANETs

    Get PDF
    An ad-hoc network will often change rapidly in topology, this courses for routes in the network to often disappear and new to arise. The Ad-hoc On-Demand Distance Vector Routing Protocol(AODV), is based on the principle of discover routes as needed. In this paper we will extend the definition of AODV with the ability to discover multiple routes to a host and switch between them, if an active route is becoming weak and there is a risk that it will disappear. We will refer to it as pre-emptive AOMDV . We will show that the performance of pre-emptive AOMDV do handle changes in topology better than AODV it self. To show the effect of extending AODV, the suggested protocol is implemented in a simulator. Performance enhancements will be presented from different scenarios, to compare pre-emptive AOMDV with the ordinary AODV. In this paper we also focus on intrusion detection based on Finite State Machine and cache memory in ad hoc networks. Security is one of the most important issues in current networks. The most common cases of attacks in mobile Ad hoc networks can be drop of routing packets and changes in the incoming packets which aims at disrupting the network routing and overall network reduce performance. The presented approach based on FSM focuses at recognizing the malicious nodes within the network in a fast and accurate way, then it deals with rapid introduction of the malicious nodes to other nodes in the network to prevent sending multiple packets and drop and packet change. Finally, we will show the significant improvement in comparison with others, we simulated our methods by NS2 software
    • …
    corecore