207 research outputs found

    Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems

    Full text link

    Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems

    Get PDF
    International audienceSystems in many safety-critical application domains are subject to certification requirements. For any given system, however, it may be the case that only a subset of its functionality is safety-critical and hence subject to certification; the rest of the functionality is non-safety-critical and does not need to be certified, or is certified to lower levels of assurance. The certification-cognizant runtime scheduling of such mixed-criticality systems is considered. An algorithm called EDF-VD (for Earliest Deadline First with Virtual Deadlines) is presented: this algorithm can schedule systems for which any number of criticality levels are defined. Efficient implementations of EDF-VD, as well as associated schedulability tests for determining whether a task system can be correctly scheduled using EDF-VD, are presented. For up to 13 criticality levels, analyses of EDF-VD, based on metrics such as processor speedup factor and utilization bounds, are derived, and conditions under which EDF-VD is optimal with respect to these metrics are identified. Finally, two extensions of EDF-VD are discussed that enhance its applicability. The extensions are aimed at scheduling a wider range of task sets, while preserving the favorable worst-case resource usage guarantees of the basic algorithm

    Preemptive uniprocessor scheduling of dual-criticality implicit-deadline sporadic tasks

    Get PDF
    Many reactive systems must be designed and analyzed prior to deployment in the presence of considerable epistemic uncertainty: the precise nature of the external environment the system will encounter, as well as the run-time behavior of the platform upon which it is implemented, cannot be predicted with complete certainty prior to deployment. The widely-studied Vestal model for mixed-criticality workloads addresses uncertainties in estimating the worst-case execution time (WCET) of real-time code. Different estimations, at different levels of assurance, are made about these WCET values; it is required that all functionalities execute correctly if the less conservative assumptions hold, while only the more critical functionalities are required to execute correctly in the (presumably less likely) event that the less conservative assumptions fail to hold but the more conservative assumptions do. A generalization of the Vestal model is considered here, in which a degraded (but non-zero) level of service is required for the less critical functionalities even in the event of only the more conservative assumptions holding. An algorithm is derived for scheduling dual-criticality implicit-deadline sporadic task systems specified in this more general model upon preemptive uniprocessor platforms, and proved to be speedup-optimal

    Using Imprecise Computing for Improved Real-Time Scheduling

    Get PDF
    Conventional hard real-time scheduling is often overly pessimistic due to the worst case execution time estimation. The pessimism can be mitigated by exploiting imprecise computing in applications where occasional small errors are acceptable. This leverage is investigated in a few previous works, which are restricted to preemptive cases. We study how to make use of imprecise computing in uniprocessor non-preemptive real-time scheduling, which is known to be more difficult than its preemptive counterpart. Several heuristic algorithms are developed for periodic tasks with independent or cumulative errors due to imprecision. Simulation results show that the proposed techniques can significantly improve task schedulability and achieve desired accuracy– schedulability tradeoff. The benefit of considering imprecise computing is further confirmed by a prototyping implementation in Linux system. Mixed-criticality system is a popular model for reducing pessimism in real-time scheduling while providing guarantee for critical tasks in presence of unexpected overrun. However, it is controversial due to some drawbacks. First, all low-criticality tasks are dropped in high-criticality mode, although they are still needed. Second, a single high-criticality job overrun leads to the pessimistic high-criticality mode for all high-criticality tasks and consequently resource utilization becomes inefficient. We attempt to tackle aforementioned two limitations of mixed-criticality system simultaneously in multiprocessor scheduling, while those two issues are mostly focused on uniprocessor scheduling in several recent works. We study how to achieve graceful degradation of low-criticality tasks by continuing their executions with imprecise computing or even precise computing if there is sufficient utilization slack. Schedulability conditions under this Variable-Precision Mixed-Criticality (VPMC) system model are investigated for partitioned scheduling and global fpEDF-VD scheduling. And a deferred switching protocol is introduced so that the chance of switching to high-criticality mode is significantly reduced. Moreover, we develop a precision optimization approach that maximizes precise computing of low-criticality tasks through 0-1 knapsack formulation. Experiments are performed through both software simulations and Linux proto- typing with consideration of overhead. Schedulability of the proposed methods is studied so that the Quality-of-Service for low-criticality tasks is improved with guarantee of satisfying all deadline constraints. The proposed precision optimization can largely reduce computing errors compared to constantly executing low-criticality tasks with imprecise computing in high-criticality mode

    On the Pitfalls of Resource Augmentation Factors and Utilization Bounds in Real-Time Scheduling

    Get PDF
    In this paper, we take a careful look at speedup factors, utilization bounds, and capacity augmentation bounds. These three metrics have been widely adopted in real-time scheduling research as the de facto standard theoretical tools for assessing scheduling algorithms and schedulability tests. Despite that, it is not always clear how researchers and designers should interpret or use these metrics. In studying this area, we found a number of surprising results, and related to them, ways in which the metrics may be misinterpreted or misunderstood. In this paper, we provide a perspective on the use of these metrics, guiding researchers on their meaning and interpretation, and helping to avoid pitfalls in their use. Finally, we propose and demonstrate the use of parametric augmentation functions as a means of providing nuanced information that may be more relevant in practical settings

    Considerations on the Least Upper Bound for Mixed-Criticality Real-Time Systems

    Get PDF
    5th Brazilian Symposium on Computing Systems Engineering, SBESC 2015 (SBESC 2015). 3 to 6, Nov, 2015. Foz do Iguaçu, Brasil.Real-time mixed-criticality systems (MCS) are designed so that tasks with different criticality levels share the same computing platform. Scheduling mechanisms must ensure that high criticality tasks are safe independently of lower criticality tasks’ behaviour. In this paper we provide theoretical schedulability properties for MCS by showing that: (a) the least upper bound on processor utilisation of MCS is in general null for both uniprocessor and multiprocessor platforms; (b) this bound lies in interval [ln 2, 2( √2 − 1)] if higher criticality tasks do not have periods larger than lower criticality ones; and (c) if the task of these uniprocessor systems have harmonic periods, the least upper bound reaches 1

    Precise energy efficient scheduling of mixed-criticality tasks & sustainable mixed-criticality scheduling

    Get PDF
    In this thesis, the imprecise mixed-criticality model (IMC) is extended to precise scheduling of tasks, and integrated with the dynamic voltage and frequency scaling (DVFS) technique to enable energy minimization. The challenge in precise scheduling of MC systems is to simultaneously guarantee the timing correctness for all tasks, hi and lo, under both pessimistic and optimistic (less pessimistic) assumptions. To the best of knowledge this is the first work to address the integration of DVFS energy conserving techniques with precise scheduling of lo-tasks of the MC model. In this thesis, the utilization based schedulability tests and sufficient conditions for such systems under Earliest Deadline First EDF-VD scheduling policy are presented. Quantitative study in the forms of speedup bound and approximation ratio are also proved for the unified model. Extensive experimental studies are conducted to verify the theoretical results as well as the effectiveness of the proposed algorithm. In safety- critical systems, it is essential to perform schedulability analysis prior to run-time. Parameters characterizing the run-time workload are generated by pessimistic techniques; hence, adopting conservative estimates may result in systems performing much better than anticipated during run-time. This thesis also addresses the following questions associated to the better performance of the task system: (i) How does parameter change affect the schedulability of a task set (system)? (ii) In the event that a mixed-criticality system design is deemed schedulable and specific part/parts of the system are reassigned to be of low-criticality, is the system still safe to run? (iii) If a system is presumed to be non-schedulable, does it invariably benefit to reduce the criticality of some task? To answer these questions, in this thesis, we not only study the property of sustainability with regards to criticality levels, but also revisit sustainability of several uniprocessor and multiprocessor scheduling policies with respect to other parameters --Abstract, page iii

    Scheduling policies and system software architectures for mixed-criticality computing

    Get PDF
    Mixed-criticality model of computation is being increasingly adopted in timing-sensitive systems. The model not only ensures that the most critical tasks in a system never fails, but also aims for better systems resource utilization in normal condition. In this report, we describe the widely used mixed-criticality task model and fixed-priority scheduling algorithms for the model in uniprocessors. Because of the necessity by the mixed-criticality task model and scheduling policies, isolation, both temporal and spatial, among tasks is one of the main requirements from the system design point of view. Different virtualization techniques have been used to design system software architecture with the goal of isolation. We discuss such a few system software architectures which are being and can be used for mixed-criticality model of computation
    • 

    corecore