762 research outputs found

    Predictor-Feedback Stabilization of Multi-Input Nonlinear Systems

    Full text link
    We develop a predictor-feedback control design for multi-input nonlinear systems with distinct input delays, of arbitrary length, in each individual input channel. Due to the fact that different input signals reach the plant at different time instants, the key design challenge, which we resolve, is the construction of the predictors of the plant's state over distinct prediction horizons such that the corresponding input delays are compensated. Global asymptotic stability of the closed-loop system is established by utilizing arguments based on Lyapunov functionals or estimates on solutions. We specialize our methodology to linear systems for which the predictor-feedback control laws are available explicitly and for which global exponential stability is achievable. A detailed example is provided dealing with the stabilization of the nonholonomic unicycle, subject to two different input delays affecting the speed and turning rate, for the illustration of our methodology.Comment: Submitted to IEEE Transactions on Automatic Control on May 19 201

    Reduction of discrete-time two-channel delayed systems

    Get PDF
    In this letter, the reduction method is extended to time-delay systems affected by two mismatched input delays. To this end, the intrinsic feedback structure of the retarded dynamics is exploited to deduce a reduced dynamics which is free of delays. Moreover, among other possibilities, an Immersion and Invariance feedback over the reduced dynamics is designed for achieving stabilization of the original systems. A chained sampled-data dynamics is used to show the effectiveness of the proposed control strategy through simulations

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Information flow and cooperative control of vehicle formations

    Get PDF
    We consider the problem of cooperation among a collection of vehicles performing a shared task using intervehicle communication to coordinate their actions. Tools from algebraic graph theory prove useful in modeling the communication network and relating its topology to formation stability. We prove a Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability. We also propose a method for decentralized information exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle with a common reference to be used for cooperative motion. We prove a separation principle that decomposes formation stability into two components: Stability of this is achieved information flow for the given graph and stability of an individual vehicle for the given controller. The information flow can thus be rendered highly robust to changes in the graph, enabling tight formation control despite limitations in intervehicle communication capability

    Stabilization of cascaded nonlinear systems under sampling and delays

    Get PDF
    Over the last decades, the methodologies of dynamical systems and control theory have been playing an increasingly relevant role in a lot of situations of practical interest. Though, a lot of theoretical problem still remain unsolved. Among all, the ones concerning stability and stabilization are of paramount importance. In order to stabilize a physical (or not) system, it is necessary to acquire and interpret heterogeneous information on its behavior in order to correctly intervene on it. In general, those information are not available through a continuous flow but are provided in a synchronous or asynchronous way. This issue has to be unavoidably taken into account for the design of the control action. In a very natural way, all those heterogeneities define an hybrid system characterized by both continuous and discrete dynamics. This thesis is contextualized in this framework and aimed at proposing new methodologies for the stabilization of sampled-data nonlinear systems with focus toward the stabilization of cascade dynamics. In doing so, we shall propose a small number of tools for constructing sampled-data feedback laws stabilizing the origin of sampled-data nonlinear systems admitting cascade interconnection representations. To this end, we shall investigate on the effect of sampling on the properties of the continuous-time system while enhancing design procedures requiring no extra assumptions over the sampled-data equivalent model. Finally, we shall show the way sampling positively affects nonlinear retarded dynamics affected by a fixed and known time-delay over the input signal by enforcing on the implicit cascade representation the sampling process induces onto the retarded system

    Stability and Stabilization of Systems with Time Delay: Limitations and Opportunities

    Get PDF
    Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation, or transport phenomena in shared environments, in heredity, and in competition in population dynamics. This monograph addresses the problem of stability analysis and the stabilisation of dynamical systems subjected to time-delays. It presents a wide and self-contained panorama of analytical methods and computational algorithms using a unified eigenvalue-based approach illustrated by examples and applications in electrical and mechanical engineering, biology, and complex network analysis
    • …
    corecore