120 research outputs found

    Test of Noise Filtering Capabilities of Backpropagation Neural Networks�

    Get PDF
    Computer Scienc

    Biologically inspired evolutionary temporal neural circuits

    Get PDF
    Biological neural networks have always motivated creation of new artificial neural networks, and in this case a new autonomous temporal neural network system. Among the more challenging problems of temporal neural networks are the design and incorporation of short and long-term memories as well as the choice of network topology and training mechanism. In general, delayed copies of network signals can form short-term memory (STM), providing a limited temporal history of events similar to FIR filters, whereas the synaptic connection strengths as well as delayed feedback loops (ER circuits) can constitute longer-term memories (LTM). This dissertation introduces a new general evolutionary temporal neural network framework (GETnet) through automatic design of arbitrary neural networks with STM and LTM. GETnet is a step towards realization of general intelligent systems that need minimum or no human intervention and can be applied to a broad range of problems. GETnet utilizes nonlinear moving average/autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in terms of architecture, synaptic delay, and synaptic weight spaces. The mixture of Lamarckian and Darwinian evolutionary mechanisms facilitates the Baldwin effect and speeds up the hybrid training. The ability to evolve arbitrary adaptive time-delay connections enables GETnet to find novel answers to many classification and system identification tasks expressed in the general form of desired multidimensional input and output signals. Simulations using Mackey-Glass chaotic time series and fingerprint perspiration-induced temporal variations are given to demonstrate the above stated capabilities of GETnet

    Multiscale Cohort Modeling of Atrial Electrophysiology : Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms

    Get PDF
    Patienten mit Vorhofflimmern sind einem fünffach erhöhten Risiko für einen ischämischen Schlaganfall ausgesetzt. Eine frühzeitige Erkennung und Diagnose der Arrhythmie würde ein rechtzeitiges Eingreifen ermöglichen, um möglicherweise auftretende Begleiterkrankungen zu verhindern. Eine Vergrößerung des linken Vorhofs sowie fibrotisches Vorhofgewebe sind Risikomarker für Vorhofflimmern, da sie die notwendigen Voraussetzungen für die Aufrechterhaltung der chaotischen elektrischen Depolarisation im Vorhof erfüllen. Mithilfe von Techniken des maschinellen Lernens könnten Fibrose und eine Vergrößerung des linken Vorhofs basierend auf P Wellen des 12-Kanal Elektrokardiogramms im Sinusrhythmus automatisiert identifiziert werden. Dies könnte die Basis für eine nicht-invasive Risikostrat- ifizierung neu auftretender Vorhofflimmerepisoden bilden, um anfällige Patienten für ein präventives Screening auszuwählen. Zu diesem Zweck wurde untersucht, ob simulierte Vorhof-Elektrokardiogrammdaten, die dem klinischen Trainingssatz eines maschinellen Lernmodells hinzugefügt wurden, zu einer verbesserten Klassifizierung der oben genannten Krankheiten bei klinischen Daten beitra- gen könnten. Zwei virtuelle Kohorten, die durch anatomische und funktionelle Variabilität gekennzeichnet sind, wurden generiert und dienten als Grundlage für die Simulation großer P Wellen-Datensätze mit genau bestimmbaren Annotationen der zugrunde liegenden Patholo- gie. Auf diese Weise erfüllen die simulierten Daten die notwendigen Voraussetzungen für die Entwicklung eines Algorithmus für maschinelles Lernen, was sie von klinischen Daten unterscheidet, die normalerweise nicht in großer Zahl und in gleichmäßig verteilten Klassen vorliegen und deren Annotationen möglicherweise durch unzureichende Expertenannotierung beeinträchtigt sind. Für die Schätzung des Volumenanteils von linksatrialem fibrotischen Gewebe wurde ein merkmalsbasiertes neuronales Netz entwickelt. Im Vergleich zum Training des Modells mit nur klinischen Daten, führte das Training mit einem hybriden Datensatz zu einer Reduzierung des Fehlers von durchschnittlich 17,5 % fibrotischem Volumen auf 16,5 %, ausgewertet auf einem rein klinischen Testsatz. Ein Long Short-Term Memory Netzwerk, das für die Unterscheidung zwischen gesunden und P Wellen von vergrößerten linken Vorhöfen entwickelt wurde, lieferte eine Genauigkeit von 0,95 wenn es auf einem hybriden Datensatz trainiert wurde, von 0,91 wenn es nur auf klinischen Daten trainiert wurde, die alle mit 100 % Sicherheit annotiert wurden, und von 0,83 wenn es auf einem klinischen Datensatz trainiert wurde, der alle Signale unabhängig von der Sicherheit der Expertenannotation enthielt. In Anbetracht der Ergebnisse dieser Arbeit können Elektrokardiogrammdaten, die aus elektrophysiologischer Modellierung und Simulationen an virtuellen Patientenkohorten resul- tieren und relevante Variabilitätsaspekte abdecken, die mit realen Beobachtungen übereinstim- men, eine wertvolle Datenquelle zur Verbesserung der automatisierten Risikostratifizierung von Vorhofflimmern sein. Auf diese Weise kann den Nachteilen klinischer Datensätze für die Entwicklung von Modellen des maschinellen Lernens entgegengewirkt werden. Dies trägt letztendlich zu einer frühzeitigen Erkennung der Arrhythmie bei, was eine rechtzeitige Auswahl geeigneter Behandlungsstrategien ermöglicht und somit das Schlaganfallrisiko der betroffenen Patienten verringert

    Automated myocardial infarction diagnosis from ECG

    Get PDF
    In the present dissertation, an automated neural network-based ECG diagnosing system was designed to detect the presence of myocardial infarction based on the hypothesis that an artificial neural network-based ECG interpretation system may improve the clinical myocardial infarction. 137 patients were included. Among them 122 had myocardial infarction, but the remaining 15 were normal. The sensitivity and the specificity of present system were 92.2% and 50.7% respectively. The sensitivity was consistent with relevant research. The relatively low specificity results from the rippling of the low pass filtering. We can conclude that neural network-based system is a promising aid for the myocardial infarction diagnosis

    Advances in Electrocardiograms

    Get PDF
    Electrocardiograms have become one of the most important, and widely used medical tools for diagnosing diseases such as cardiac arrhythmias, conduction disorders, electrolyte imbalances, hypertension, coronary artery disease and myocardial infarction. This book reviews recent advancements in electrocardiography. The four sections of this volume, Cardiac Arrhythmias, Myocardial Infarction, Autonomic Dysregulation and Cardiotoxicology, provide comprehensive reviews of advancements in the clinical applications of electrocardiograms. This book is replete with diagrams, recordings, flow diagrams and algorithms which demonstrate the possible future direction for applying electrocardiography to evaluating the development and progression of cardiac diseases. The chapters in this book describe a number of unique features of electrocardiograms in adult and pediatric patient populations with predilections for cardiac arrhythmias and other electrical abnormalities associated with hypertension, coronary artery disease, myocardial infarction, sleep apnea syndromes, pericarditides, cardiomyopathies and cardiotoxicities, as well as innovative interpretations of electrocardiograms during exercise testing and electrical pacing

    Learning Biosignals with Deep Learning

    Get PDF
    The healthcare system, which is ubiquitously recognized as one of the most influential system in society, is facing new challenges since the start of the decade.The myriad of physiological data generated by individuals, namely in the healthcare system, is generating a burden on physicians, losing effectiveness on the collection of patient data. Information systems and, in particular, novel deep learning (DL) algorithms have been prompting a way to take this problem. This thesis has the aim to have an impact in biosignal research and industry by presenting DL solutions that could empower this field. For this purpose an extensive study of how to incorporate and implement Convolutional Neural Networks (CNN), Recursive Neural Networks (RNN) and Fully Connected Networks in biosignal studies is discussed. Different architecture configurations were explored for signal processing and decision making and were implemented in three different scenarios: (1) Biosignal learning and synthesis; (2) Electrocardiogram (ECG) biometric systems, and; (3) Electrocardiogram (ECG) anomaly detection systems. In (1) a RNN-based architecture was able to replicate autonomously three types of biosignals with a high degree of confidence. As for (2) three CNN-based architectures, and a RNN-based architecture (same used in (1)) were used for both biometric identification, reaching values above 90% for electrode-base datasets (Fantasia, ECG-ID and MIT-BIH) and 75% for off-person dataset (CYBHi), and biometric authentication, achieving Equal Error Rates (EER) of near 0% for Fantasia and MIT-BIH and bellow 4% for CYBHi. As for (3) the abstraction of healthy clean the ECG signal and detection of its deviation was made and tested in two different scenarios: presence of noise using autoencoder and fully-connected network (reaching 99% accuracy for binary classification and 71% for multi-class), and; arrhythmia events by including a RNN to the previous architecture (57% accuracy and 61% sensitivity). In sum, these systems are shown to be capable of producing novel results. The incorporation of several AI systems into one could provide to be the next generation of preventive medicine, as the machines have access to different physiological and anatomical states, it could produce more informed solutions for the issues that one may face in the future increasing the performance of autonomous preventing systems that could be used in every-day life in remote places where the access to medicine is limited. These systems will also help the study of the signal behaviour and how they are made in real life context as explainable AI could trigger this perception and link the inner states of a network with the biological traits.O sistema de saúde, que é ubiquamente reconhecido como um dos sistemas mais influentes da sociedade, enfrenta novos desafios desde o ínicio da década. A miríade de dados fisiológicos gerados por indíviduos, nomeadamente no sistema de saúde, está a gerar um fardo para os médicos, perdendo a eficiência no conjunto dos dados do paciente. Os sistemas de informação e, mais espcificamente, da inovação de algoritmos de aprendizagem profunda (DL) têm sido usados na procura de uma solução para este problema. Esta tese tem o objetivo de ter um impacto na pesquisa e na indústria de biosinais, apresentando soluções de DL que poderiam melhorar esta área de investigação. Para esse fim, é discutido um extenso estudo de como incorporar e implementar redes neurais convolucionais (CNN), redes neurais recursivas (RNN) e redes totalmente conectadas para o estudo de biosinais. Diferentes arquiteturas foram exploradas para processamento e tomada de decisão de sinais e foram implementadas em três cenários diferentes: (1) Aprendizagem e síntese de biosinais; (2) sistemas biométricos com o uso de eletrocardiograma (ECG), e; (3) Sistema de detecção de anomalias no ECG. Em (1) uma arquitetura baseada na RNN foi capaz de replicar autonomamente três tipos de sinais biológicos com um alto grau de confiança. Quanto a (2) três arquiteturas baseadas em CNN e uma arquitetura baseada em RNN (a mesma usada em (1)) foram usadas para ambas as identificações, atingindo valores acima de 90 % para conjuntos de dados à base de eletrodos (Fantasia, ECG-ID e MIT -BIH) e 75 % para o conjunto de dados fora da pessoa (CYBHi) e autenticação, atingindo taxas de erro iguais (EER) de quase 0 % para Fantasia e MIT-BIH e abaixo de 4 % para CYBHi. Quanto a (3) a abstração de sinais limpos e assimptomáticos de ECG e a detecção do seu desvio foram feitas e testadas em dois cenários diferentes: na presença de ruído usando um autocodificador e uma rede totalmente conectada (atingindo 99 % de precisão na classificação binária e 71 % na multi-classe), e; eventos de arritmia incluindo um RNN na arquitetura anterior (57 % de precisão e 61 % de sensibilidade). Em suma, esses sistemas são mais uma vez demonstrados como capazes de produzir resultados inovadores. A incorporação de vários sistemas de inteligência artificial em um unico sistema pederá desencadear a próxima geração de medicina preventiva. Os algoritmos ao terem acesso a diferentes estados fisiológicos e anatómicos, podem produzir soluções mais informadas para os problemas que se possam enfrentar no futuro, aumentando o desempenho de sistemas autónomos de prevenção que poderiam ser usados na vida quotidiana, nomeadamente em locais remotos onde o acesso à medicinas é limitado. Estes sistemas também ajudarão o estudo do comportamento do sinal e como eles são feitos no contexto da vida real, pois a IA explicável pode desencadear essa percepção e vincular os estados internos de uma rede às características biológicas

    2013 Conference Abstracts: Annual Undergraduate Research Conference at the Interface of Biology and Mathematics

    Get PDF
    URC Schedule and Abstract Book for the Fifth Annual Undergraduate Research Conference at the Interface of Biology and Mathematics Date: November 16-17, 2013Plenary Speaker: Mariel Vazquez, Associate Professor of Mathematics at San Francisco State UniversityFeatured Speaker: Andrew Liebhold, Research Entomologist for the USDA Forest Servic

    Aerospace medicine and biology: A cumulative index to the continuing bibliography of the 1973 issues

    Get PDF
    A cumulative index to the abstracts contained in Supplements 112 through 123 of Aerospace Medicine and Biology A Continuing Bibliography is presented. It includes three indexes: subject, personal author, and corporate source
    corecore