23,489 research outputs found

    Recurrent Latent Variable Networks for Session-Based Recommendation

    Full text link
    In this work, we attempt to ameliorate the impact of data sparsity in the context of session-based recommendation. Specifically, we seek to devise a machine learning mechanism capable of extracting subtle and complex underlying temporal dynamics in the observed session data, so as to inform the recommendation algorithm. To this end, we improve upon systems that utilize deep learning techniques with recurrently connected units; we do so by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network recurrent units as stochastic latent variables with a prior distribution imposed over them. On this basis, we proceed to infer corresponding posteriors; these can be used for prediction and recommendation generation, in a way that accounts for the uncertainty in the available sparse training data. To allow for our approach to easily scale to large real-world datasets, we perform inference under an approximate amortized variational inference (AVI) setup, whereby the learned posteriors are parameterized via (conventional) neural networks. We perform an extensive experimental evaluation of our approach using challenging benchmark datasets, and illustrate its superiority over existing state-of-the-art techniques

    Pyramid: Enhancing Selectivity in Big Data Protection with Count Featurization

    Full text link
    Protecting vast quantities of data poses a daunting challenge for the growing number of organizations that collect, stockpile, and monetize it. The ability to distinguish data that is actually needed from data collected "just in case" would help these organizations to limit the latter's exposure to attack. A natural approach might be to monitor data use and retain only the working-set of in-use data in accessible storage; unused data can be evicted to a highly protected store. However, many of today's big data applications rely on machine learning (ML) workloads that are periodically retrained by accessing, and thus exposing to attack, the entire data store. Training set minimization methods, such as count featurization, are often used to limit the data needed to train ML workloads to improve performance or scalability. We present Pyramid, a limited-exposure data management system that builds upon count featurization to enhance data protection. As such, Pyramid uniquely introduces both the idea and proof-of-concept for leveraging training set minimization methods to instill rigor and selectivity into big data management. We integrated Pyramid into Spark Velox, a framework for ML-based targeting and personalization. We evaluate it on three applications and show that Pyramid approaches state-of-the-art models while training on less than 1% of the raw data

    Bid Optimization by Multivariable Control in Display Advertising

    Full text link
    Real-Time Bidding (RTB) is an important paradigm in display advertising, where advertisers utilize extended information and algorithms served by Demand Side Platforms (DSPs) to improve advertising performance. A common problem for DSPs is to help advertisers gain as much value as possible with budget constraints. However, advertisers would routinely add certain key performance indicator (KPI) constraints that the advertising campaign must meet due to practical reasons. In this paper, we study the common case where advertisers aim to maximize the quantity of conversions, and set cost-per-click (CPC) as a KPI constraint. We convert such a problem into a linear programming problem and leverage the primal-dual method to derive the optimal bidding strategy. To address the applicability issue, we propose a feedback control-based solution and devise the multivariable control system. The empirical study based on real-word data from Taobao.com verifies the effectiveness and superiority of our approach compared with the state of the art in the industry practices
    corecore