1,820 research outputs found

    Predicting morbidity by local similarities in multi-scale patient trajectories

    Full text link
    [EN] Patient Trajectories (PTs) are a method of representing the temporal evolution of patients. They can include information from different sources and be used in socio-medical or clinical domains. PTs have generally been used to generate and study the most common trajectories in, for instance, the development of a disease. On the other hand, healthcare predictive models generally rely on static snapshots of patient information. Only a few works about prediction in healthcare have been found that use PTs, and therefore benefit from their temporal dimension. All of them, however, have used PTs created from single-source information. Therefore, the use of longitudinal multi-scale data to build PTs and use them to obtain predictions about health conditions is yet to be explored. Our hypothesis is that local similarities on small chunks of PTs can identify similar patients concerning their future morbidities. The objectives of this work are (1) to develop a methodology to identify local similarities between PTs before the occurrence of morbidities to predict these on new query individuals; and (2) to validate this methodology on risk prediction of cardiovascular diseases (CVD) occurrence in patients with diabetes. We have proposed a novel formal definition of PTs based on sequences of longitudinal multi-scale data. Moreover, a dynamic programming methodology to identify local alignments on PTs for predicting future morbidities is proposed. Both the proposed methodology for PT definition and the alignment algorithm are generic to be applied on any clinical domain. We validated this solution for predicting CVD in patients with diabetes and we achieved a precision of 0.33, a recall of 0.72 and a specificity of 0.38. Therefore, the proposed solution in the diabetes use case can result of utmost utility to secondary screening.This work was supported by the CrowdHealth project (COLLECTIVE WISDOM DRIVING PUBLIC HEALTH POLICIES (727560)) and the MTS4up project (DPI2016-80054-R).Carrasco-Ribelles, LA.; Pardo-Más, JR.; Tortajada, S.; Sáez Silvestre, C.; Valdivieso, B.; Garcia-Gomez, JM. (2021). Predicting morbidity by local similarities in multi-scale patient trajectories. Journal of Biomedical Informatics. 120:1-9. https://doi.org/10.1016/j.jbi.2021.103837S1912

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    2019 SDSU Data Science Symposium Program

    Get PDF
    https://openprairie.sdstate.edu/ds_symposium_programs/1001/thumbnail.jp

    Modeling and Simulation Methodologies for Digital Twin in Industry 4.0

    Get PDF
    The concept of Industry 4.0 represents an innovative vision of what will be the factory of the future. The principles of this new paradigm are based on interoperability and data exchange between dierent industrial equipment. In this context, Cyber- Physical Systems (CPSs) cover one of the main roles in this revolution. The combination of models and the integration of real data coming from the field allows to obtain the virtual copy of the real plant, also called Digital Twin. The entire factory can be seen as a set of CPSs and the resulting system is also called Cyber-Physical Production System (CPPS). This CPPS represents the Digital Twin of the factory with which it would be possible analyze the real factory. The interoperability between the real industrial equipment and the Digital Twin allows to make predictions concerning the quality of the products. More in details, these analyses are related to the variability of production quality, prediction of the maintenance cycle, the accurate estimation of energy consumption and other extra-functional properties of the system. Several tools [2] allow to model a production line, considering dierent aspects of the factory (i.e. geometrical properties, the information flows etc.) However, these simulators do not provide natively any solution for the design integration of CPSs, making impossible to have precise analysis concerning the real factory. Furthermore, for the best of our knowledge, there are no solution regarding a clear integration of data coming from real equipment into CPS models that composes the entire production line. In this context, the goal of this thesis aims to define an unified methodology to design and simulate the Digital Twin of a plant, integrating data coming from real equipment. In detail, the presented methodologies focus mainly on: integration of heterogeneous models in production line simulators; Integration of heterogeneous models with ad-hoc simulation strategies; Multi-level simulation approach of CPS and integration of real data coming from sensors into models. All the presented contributions produce an environment that allows to perform simulation of the plant based not only on synthetic data, but also on real data coming from equipments

    Fault-based Analysis of Industrial Cyber-Physical Systems

    Get PDF
    The fourth industrial revolution called Industry 4.0 tries to bridge the gap between traditional Electronic Design Automation (EDA) technologies and the necessity of innovating in many indus- trial fields, e.g., automotive, avionic, and manufacturing. This complex digitalization process in- volves every industrial facility and comprises the transformation of methodologies, techniques, and tools to improve the efficiency of every industrial process. The enhancement of functional safety in Industry 4.0 applications needs to exploit the studies related to model-based and data-driven anal- yses of the deployed Industrial Cyber-Physical System (ICPS). Modeling an ICPS is possible at different abstraction levels, relying on the physical details included in the model and necessary to describe specific system behaviors. However, it is extremely complicated because an ICPS is com- posed of heterogeneous components related to different physical domains, e.g., digital, electrical, and mechanical. In addition, it is also necessary to consider not only nominal behaviors but even faulty behaviors to perform more specific analyses, e.g., predictive maintenance of specific assets. Nevertheless, these faulty data are usually not present or not available directly from the industrial machinery. To overcome these limitations, constructing a virtual model of an ICPS extended with different classes of faults enables the characterization of faulty behaviors of the system influenced by different faults. In literature, these topics are addressed with non-uniformly approaches and with the absence of standardized and automatic methodologies for describing and simulating faults in the different domains composing an ICPS. This thesis attempts to overcome these state-of-the-art gaps by proposing novel methodologies, techniques, and tools to: model and simulate analog and multi-domain systems; abstract low-level models to higher-level behavioral models; and monitor industrial systems based on the Industrial Internet of Things (IIOT) paradigm. Specifically, the proposed contributions involve the exten- sion of state-of-the-art fault injection practices to improve the ICPSs safety, the development of frameworks for safety operations automatization, and the definition of a monitoring framework for ICPSs. Overall, fault injection in analog and digital models is the state of the practice to en- sure functional safety, as mentioned in the ISO 26262 standard specific for the automotive field. Starting from state-of-the-art defects defined for analog descriptions, new defects are proposed to enhance the IEEE P2427 draft standard for analog defect modeling and coverage. Moreover, dif- ferent techniques to abstract a transistor-level model to a behavioral model are proposed to speed up the simulation of faulty circuits. Therefore, unlike the electrical domain, there is no extensive use of fault injection techniques in the mechanical one. Thus, extending the fault injection to the mechanical and thermal fields allows for supporting the definition and evaluation of more reliable safety mechanisms. Hence, a taxonomy of mechanical faults is derived from the electrical domain by exploiting the physical analogies. Furthermore, specific tools are built for automatically instru- menting different descriptions with multi-domain faults. The entire work is proposed as a basis for supporting the creation of increasingly resilient and secure ICPS that need to preserve functional safety in any operating context

    Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes

    Full text link
    [EN] Life expectancy is increasing and, so, the years that patients have to live with chronic diseases and co-morbidities. Type 2 diabetes is one of the most prevalent chronic diseases, specifically linked to being overweight and ages over sixty. Recent studies have demonstrated the effectiveness of new strategies to delay and even prevent the onset of type 2 diabetes by a combination of active and healthy lifestyle on cohorts of mid to high risk subjects. Prospective research has been driven on large groups of the population to build risk scores that aim to obtain a rule for the classification of patients according to the odds for developing the disease. Currently, there are more than two hundred models and risk scores for doing this, but a few have been properly evaluated in external groups and integrated into a clinical application for decision support. In this paper, we present a novel system architecture based on service choreography and hybrid modeling, which enables a distributed integration of clinical databases, statistical and mathematical engines and web interfaces to be deployed in a clinical setting. The system was assessed during an eight-week continuous period with eight endocrinologists of a hospital who evaluated up to 8080 patients with seven different type 2 diabetes risk models implemented in two mathematical engines. Throughput was assessed as a matter of technical key performance indicators, confirming the reliability and efficiency of the proposed architecture to integrate hybrid artificial intelligence tools into daily clinical routine to identify high risk subjects.The authors wish to acknowledge the consortium of the MOSAIC project (funded by the European Commission, Grant No. FP7-ICT 600914) for their commitment during concept development, which led to the development of the research reported in this manuscriptMartinez-Millana, A.; Bayo-Monton, JL.; Argente-Pla, M.; Fernández Llatas, C.; Merino-Torres, JF.; Traver Salcedo, V. (2018). Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes. Sensors. 18 (1)(79):1-26. https://doi.org/10.3390/s18010079S12618 (1)79Thomas, C. C., & Philipson, L. H. (2015). Update on Diabetes Classification. Medical Clinics of North America, 99(1), 1-16. doi:10.1016/j.mcna.2014.08.015Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840-846. doi:10.1038/nature05482Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137-149. doi:10.1016/j.diabres.2013.11.002Beagley, J., Guariguata, L., Weil, C., & Motala, A. A. (2014). Global estimates of undiagnosed diabetes in adults. Diabetes Research and Clinical Practice, 103(2), 150-160. doi:10.1016/j.diabres.2013.11.001Hippisley-Cox, J., Coupland, C., Robson, J., Sheikh, A., & Brindle, P. (2009). Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ, 338(mar17 2), b880-b880. doi:10.1136/bmj.b880Meigs, J. B., Shrader, P., Sullivan, L. M., McAteer, J. B., Fox, C. S., Dupuis, J., … Cupples, L. A. (2008). Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. New England Journal of Medicine, 359(21), 2208-2219. doi:10.1056/nejmoa0804742Gillies, C. L., Abrams, K. R., Lambert, P. C., Cooper, N. J., Sutton, A. J., Hsu, R. T., & Khunti, K. (2007). Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ, 334(7588), 299. doi:10.1136/bmj.39063.689375.55Noble, D., Mathur, R., Dent, T., Meads, C., & Greenhalgh, T. (2011). Risk models and scores for type 2 diabetes: systematic review. BMJ, 343(nov28 1), d7163-d7163. doi:10.1136/bmj.d7163Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. M. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Annals of Internal Medicine, 162(1), 55. doi:10.7326/m14-0697Steyerberg, E. W., Moons, K. G. M., van der Windt, D. A., Hayden, J. A., Perel, P., … Schroter, S. (2013). Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Medicine, 10(2), e1001381. doi:10.1371/journal.pmed.1001381Collins, G. S., & Moons, K. G. M. (2012). Comparing risk prediction models. BMJ, 344(may24 2), e3186-e3186. doi:10.1136/bmj.e3186Riley, R. D., Ensor, J., Snell, K. I. E., Debray, T. P. A., Altman, D. G., Moons, K. G. M., & Collins, G. S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, i3140. doi:10.1136/bmj.i3140Reilly, B. M., & Evans, A. T. (2006). Translating Clinical Research into Clinical Practice: Impact of Using Prediction Rules To Make Decisions. Annals of Internal Medicine, 144(3), 201. doi:10.7326/0003-4819-144-3-200602070-00009Altman, D. G., Vergouwe, Y., Royston, P., & Moons, K. G. M. (2009). Prognosis and prognostic research: validating a prognostic model. BMJ, 338(may28 1), b605-b605. doi:10.1136/bmj.b605Moons, K. G. M., Royston, P., Vergouwe, Y., Grobbee, D. E., & Altman, D. G. (2009). Prognosis and prognostic research: what, why, and how? BMJ, 338(feb23 1), b375-b375. doi:10.1136/bmj.b375Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., … Kattan, M. W. (2010). Assessing the Performance of Prediction Models. Epidemiology, 21(1), 128-138. doi:10.1097/ede.0b013e3181c30fb2Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784-1789. doi:10.1016/j.eswa.2009.07.064Schmidt, M. I., Duncan, B. B., Bang, H., Pankow, J. S., Ballantyne, C. M., … Golden, S. H. (2005). Identifying Individuals at High Risk for Diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care, 28(8), 2013-2018. doi:10.2337/diacare.28.8.2013Talmud, P. J., Hingorani, A. D., Cooper, J. A., Marmot, M. G., Brunner, E. J., Kumari, M., … Humphries, S. E. (2010). Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ, 340(jan14 1), b4838-b4838. doi:10.1136/bmj.b4838Sackett, D. L. (1997). Evidence-based medicine. Seminars in Perinatology, 21(1), 3-5. doi:10.1016/s0146-0005(97)80013-4Segagni, D., Ferrazzi, F., Larizza, C., Tibollo, V., Napolitano, C., Priori, S. G., & Bellazzi, R. (2011). R Engine Cell: integrating R into the i2b2 software infrastructure. Journal of the American Medical Informatics Association, 18(3), 314-317. doi:10.1136/jamia.2010.007914Semantic Webhttp://www.w3.org/2001/sw/Murphy, S. N., Weber, G., Mendis, M., Gainer, V., Chueh, H. C., Churchill, S., & Kohane, I. (2010). Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). Journal of the American Medical Informatics Association, 17(2), 124-130. doi:10.1136/jamia.2009.000893Murphy, S., Churchill, S., Bry, L., Chueh, H., Weiss, S., Lazarus, R., … Kohane, I. (2009). Instrumenting the health care enterprise for discovery research in the genomic era. Genome Research, 19(9), 1675-1681. doi:10.1101/gr.094615.109Lindstrom, J., & Tuomilehto, J. (2003). The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care, 26(3), 725-731. doi:10.2337/diacare.26.3.725Alssema, M., Vistisen, D., Heymans, M. W., Nijpels, G., Glümer, C., … Dekker, J. M. (2010). The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia, 54(5), 1004-1012. doi:10.1007/s00125-010-1990-7Mann, D. M., Bertoni, A. G., Shimbo, D., Carnethon, M. R., Chen, H., Jenny, N. S., & Muntner, P. (2010). Comparative Validity of 3 Diabetes Mellitus Risk Prediction Scoring Models in a Multiethnic US Cohort: The Multi-Ethnic Study of Atherosclerosis. American Journal of Epidemiology, 171(9), 980-988. doi:10.1093/aje/kwq030Stern, M. P., Williams, K., & Haffner, S. M. (2002). Identification of Persons at High Risk for Type 2 Diabetes Mellitus: Do We Need the Oral Glucose Tolerance Test? Annals of Internal Medicine, 136(8), 575. doi:10.7326/0003-4819-136-8-200204160-00006Abdul-Ghani, M. A., Abdul-Ghani, T., Stern, M. P., Karavic, J., Tuomi, T., Bo, I., … Groop, L. (2011). Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk. Diabetes Care, 34(9), 2108-2112. doi:10.2337/dc10-2201Rahman, M., Simmons, R. K., Harding, A.-H., Wareham, N. J., & Griffin, S. J. (2008). A simple risk score identifies individuals at high risk of developing Type 2 diabetes: a prospective cohort study. Family Practice, 25(3), 191-196. doi:10.1093/fampra/cmn024Guasch-Ferré, M., Bulló, M., Costa, B., Martínez-Gonzalez, M. Á., Ibarrola-Jurado, N., … Estruch, R. (2012). A Risk Score to Predict Type 2 Diabetes Mellitus in an Elderly Spanish Mediterranean Population at High Cardiovascular Risk. PLoS ONE, 7(3), e33437. doi:10.1371/journal.pone.0033437Wilson, P. W. F. (2007). Prediction of Incident Diabetes Mellitus in Middle-aged Adults. Archives of Internal Medicine, 167(10), 1068. doi:10.1001/archinte.167.10.1068Franzin, A., Sambo, F., & Di Camillo, B. (2016). bnstruct: an R package for Bayesian Network structure learning in the presence of missing data. Bioinformatics, btw807. doi:10.1093/bioinformatics/btw807Rood, B., & Lewis, M. J. (2009). Grid Resource Availability Prediction-Based Scheduling and Task Replication. Journal of Grid Computing, 7(4), 479-500. doi:10.1007/s10723-009-9135-2Ramakrishnan, L., & Reed, D. A. (2009). Predictable quality of service atop degradable distributed systems. Cluster Computing, 16(2), 321-334. doi:10.1007/s10586-009-0078-yKianpisheh, S., Kargahi, M., & Charkari, N. M. (2017). Resource Availability Prediction in Distributed Systems: An Approach for Modeling Non-Stationary Transition Probabilities. IEEE Transactions on Parallel and Distributed Systems, 28(8), 2357-2372. doi:10.1109/tpds.2017.2659746Weber, G. M., Murphy, S. N., McMurry, A. J., MacFadden, D., Nigrin, D. J., Churchill, S., & Kohane, I. S. (2009). The Shared Health Research Information Network (SHRINE): A Prototype Federated Query Tool for Clinical Data Repositories. Journal of the American Medical Informatics Association, 16(5), 624-630. doi:10.1197/jamia.m3191Martinez-Millana, A., Fico, G., Fernández-Llatas, C., & Traver, V. (2015). Performance assessment of a closed-loop system for diabetes management. Medical & Biological Engineering & Computing, 53(12), 1295-1303. doi:10.1007/s11517-015-1245-3Foundation for Intelligent Physical Agentshttp://www.pa.org/González-Vélez, H., Mier, M., Julià-Sapé, M., Arvanitis, T. N., García-Gómez, J. M., Robles, M., … Lluch-Ariet, M. (2007). HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Applied Intelligence, 30(3), 191-202. doi:10.1007/s10489-007-0085-8Bellazzi, R. (2014). Big Data and Biomedical Informatics: A Challenging Opportunity. Yearbook of Medical Informatics, 23(01), 08-13. doi:10.15265/iy-2014-0024Maximilien, E. M., & Singh, M. P. (2004). A framework and ontology for dynamic Web services selection. IEEE Internet Computing, 8(5), 84-93. doi:10.1109/mic.2004.2

    Nudging lifestyles for better health outcomes: crowdsourced data and persuasive technologies for behavioural change

    Get PDF
    For at least three decades, a Tsunami of preventable poor health has continued to threaten the future prosperity of our nations. Despite its effective destructive power, our collective predictive and preventive capacity remains remarkably under-developed This Tsunami is almost entirely mediated through the passive and unintended consequences of modernisation. The malignant spread of obesity in genetically stable populations dictates that gene disposition is not a significant contributor as populations, crowds or cohorts are all incapable of experiencing a new shipment of genes in only 2-3 decades. The authors elaborate on why a supply-side approach: advancing health care delivery cannot be expected to impact health outcomes effectively. Better care sets the stage for more care yet remains largely impotent in returning individuals to disease-free states. The authors urge an expedited paradigmatic shift in policy selection criterion towards using data intensive crowd-based evidence integrating insights from system thinking, networks and nudging. Collectively these will support emerging potentialities of ICT used in proactive policy modelling. Against this background the authors proposes a solution that stated in a most compact form consists of: the provision of mundane yet high yield data through light instrumentation of crowds enabling participative sensing, real time living epidemiology separating the per unit co-occurrences which are health promoting from those which are not, nudging through persuasive technologies, serious gaming to sustain individual health behaviour change and intuitive visualisation with reliable simulation to evaluate and direct public health investments and policies in evidence-based waysJRC.DDG.J.4-Information Societ

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System
    corecore