2,440 research outputs found

    Machine Learning for Physiological Time Series: Representing and Controlling Blood Glucose for Diabetes Management

    Full text link
    Type 1 diabetes is a chronic health condition affecting over one million patients in the US, where blood glucose (sugar) levels are not well regulated by the body. Researchers have sought to use physiological data (e.g., blood glucose measurements) collected from wearable devices to manage this disease, either by forecasting future blood glucose levels for predictive alarms, or by automating insulin delivery for blood glucose management. However, the application of machine learning (ML) to these data is hampered by latent context, limited supervision and complex temporal dependencies. To address these challenges, we develop and evaluate novel ML approaches in the context of i) representing physiological time series, particularly for forecasting blood glucose values and ii) decision making for when and how much insulin to deliver. When learning representations, we leverage the structure of the physiological sequence as an implicit information stream. In particular, we a) incorporate latent context when predicting adverse events by jointly modeling patterns in the data and the context those patterns occurred under, b) propose novel types of self-supervision to handle limited data and c) propose deep models that predict functions underlying trajectories to encode temporal dependencies. In the context of decision making, we use reinforcement learning (RL) for blood glucose management. Through the use of an FDA-approved simulator of the glucoregulatory system, we achieve strong performance using deep RL with and without human intervention. However, the success of RL typically depends on realistic simulators or experimental real-world deployment, neither of which are currently practical for problems in health. Thus, we propose techniques for leveraging imperfect simulators and observational data. Beyond diabetes, representing and managing physiological signals is an important problem. By adapting techniques to better leverage the structure inherent in the data we can help overcome these challenges.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163134/1/ifox_1.pd

    Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU

    Full text link
    Machine learning approaches have been effective in predicting adverse outcomes in different clinical settings. These models are often developed and evaluated on datasets with heterogeneous patient populations. However, good predictive performance on the aggregate population does not imply good performance for specific groups. In this work, we present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task. We demonstrate how to discover relevant groups in an unsupervised way with a sequence-to-sequence autoencoder. We show that using these groups in a multi-task framework leads to better predictive performance of in-hospital mortality both across groups and overall. We also highlight the need for more granular evaluation of performance when dealing with heterogeneous populations.Comment: KDD 201

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl

    Learning Sensory Representations with Minimal Supervision

    Get PDF
    • …
    corecore