2,418 research outputs found

    Digital 3D Technologies for Humanities Research and Education: An Overview

    Get PDF
    Digital 3D modelling and visualization technologies have been widely applied to support research in the humanities since the 1980s. Since technological backgrounds, project opportunities, and methodological considerations for application are widely discussed in the literature, one of the next tasks is to validate these techniques within a wider scientific community and establish them in the culture of academic disciplines. This article resulted from a postdoctoral thesis and is intended to provide a comprehensive overview on the use of digital 3D technologies in the humanities with regards to (1) scenarios, user communities, and epistemic challenges; (2) technologies, UX design, and workflows; and (3) framework conditions as legislation, infrastructures, and teaching programs. Although the results are of relevance for 3D modelling in all humanities disciplines, the focus of our studies is on modelling of past architectural and cultural landscape objects via interpretative 3D reconstruction methods

    The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm

    Get PDF
    This paper is motivated by the concept that the successful, effective, and sustainable implementation of the smart city paradigm requires a close cooperation among researchers with different, complementary interests and, in most cases, a multidisciplinary approach. It first briefly discusses how such a multidisciplinary methodology, transversal to various disciplines such as architecture, computer science, civil engineering, electrical, electronic and telecommunication engineering, social science and behavioral science, etc., can be successfully employed for the development of suitable modeling tools and real solutions of such sociotechnical systems. Then, the paper presents some pilot projects accomplished by the authors within the framework of some major European Union (EU) and national research programs, also involving the Bologna municipality and some of the key players of the smart city industry. Each project, characterized by different and complementary approaches/modeling tools, is illustrated along with the relevant contextualization and the advancements with respect to the state of the art

    Structural and seismic monitoring of historical and contemporary buildings: general principles and applications

    Get PDF
    Structural Health Monitoring (SHM) indicates the continuous or periodic assessment of the conditions of a structure or a set of structures using information from sensor systems, integrated or autonomous, and from any further operation that is aimed at preserving structural integrity. SHM is a broad and multidisciplinary field, both for the spectrum of sciences and technologies involved and for the variety of applications. The technological developments that have made the advancement of this discipline possible come from many fields, including physics, chemistry, materials science, biology, but above all aerospace, civil, electronic and mechanical engineering. The first applications, at the turn of the sixties and seventies, concerned the integrity control of remote structural elements, such as foundation piles and submerged parts of off-shore platforms, but nowadays this type of monitoring is practiced on airplanes, vehicles spacecraft, ships, helicopters, automobiles, bridges, buildings, civil infrastructure, power plants, pipelines, electronic systems, manufacturing and processing facilities, and biological systems. This paper carries out an extensive examination of the theoretical and applicative foundations of structural and seismic monitoring, focusing in particular on methods that exploit natural vibrations and their use both in the diagnosis and in the prediction of the seismic response of civil structures, infrastructure networks, and traditional and modern architectural heritage

    Key challenges in agent-based modelling for geo-spatial simulation

    Get PDF
    Agent-based modelling (ABM) is fast becoming the dominant paradigm in social simulation due primarily to a worldview that suggests that complex systems emerge from the bottom-up, are highly decentralised, and are composed of a multitude of heterogeneous objects called agents. These agents act with some purpose and their interaction, usually through time and space, generates emergent order, often at higher levels than those at which such agents operate. ABM however raises as many challenges as it seeks to resolve. It is the purpose of this paper to catalogue these challenges and to illustrate them using three somewhat different agent-based models applied to city systems. The seven challenges we pose involve: the purpose for which the model is built, the extent to which the model is rooted in independent theory, the extent to which the model can be replicated, the ways the model might be verified, calibrated and validated, the way model dynamics are represented in terms of agent interactions, the extent to which the model is operational, and the way the model can be communicated and shared with others. Once catalogued, we then illustrate these challenges with a pedestrian model for emergency evacuation in central London, a hypothetical model of residential segregation tuned to London data which elaborates the standard Schelling (1971) model, and an agent-based residential location built according to spatial interactions principles, calibrated to trip data for Greater London. The ambiguities posed by this new style of modelling are drawn out as conclusions

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Assessing the perceived realism of agent crowd behaviour within virtual urban environments using psychophysics

    Get PDF
    Inhabited virtual environments feature in a growing number of graphical applications. Simulated crowds are employed for different purposes; ranging from evaluation of evacuation procedures to driving interactable elements in video games. For many applications, it is important that the displayed crowd behaviour is perceptually plausible to the intended viewers. Crowd behaviour is inherently in flux, often depending upon many different variables such as location, situation and crowd composition. Researchers have, for a long time, attempted to understand and reason about crowd behaviour, going back as far as famous psychologists such as Gustave Le Bon and Sigmund Freud who applied theories of mob psychology with varying results. Since then, various other methods have been tried, from articial intelligence to simple heuristics, for crowd simulation. Even though the research into methods for simulating crowds has a long history, evaluating such simulations has received less attention and, as this thesis will show, increased complexity and high-delity recreation of recorded behaviours does not guarantee improvement in the plausibility for a human observer. Actual crowd data is not always perceived more real than simulation, making it dicult to identify gold standards, or a ground truth. This thesis presents new work on the use of psychophysics for perceptual evaluation of crowd simulation in order to develop methods and metrics for tailoring crowd behaviour for target applications. Psychophysics itself is branch of psychology dedicated to studying the relationship between a given stimuli and how it is perceived. A three-stage methodology of analysis, synthesis and perception is employed in which crowd data is gathered from the analysis of real instances of crowd behaviour and then used to synthesise behavioural features for simulation before being perceptually evaluated using psychophysics. Perceptual thresholds are calculated based on the psychometric function and key congurations are identied that appear the most perceptually plausible to human viewers. The method is shown to be useful for the initial application and it is expected that it will be applicable to a wide range of simulation problems in which human perception and acceptance is the ultimate measure of success

    Data from mobile phone operators: A tool for smarter cities?

    Get PDF
    Abstract The use of mobile phone data provides new spatio-temporal tools for improving urban planning, and for reducing inefficiencies in present-day urban systems. Data from mobile phones, originally intended as a communication tool, are increasingly used as innovative tools in geography and social sciences research. Empirical studies on complex city systems from human-centred and urban dynamics perspectives provide new insights to develop promising applications for supporting smart city initiatives. This paper provides a comprehensive review and a typology of spatial studies on mobile phone data, and highlights the applicability of such digital data to develop innovative applications for enhanced urban management
    • 

    corecore