7,576 research outputs found

    Data-based fault detection in chemical processes: Managing records with operator intervention and uncertain labels

    Get PDF
    Developing data-driven fault detection systems for chemical plants requires managing uncertain data labels and dynamic attributes due to operator-process interactions. Mislabeled data is a known problem in computer science that has received scarce attention from the process systems community. This work introduces and examines the effects of operator actions in records and labels, and the consequences in the development of detection models. Using a state space model, this work proposes an iterative relabeling scheme for retraining classifiers that continuously refines dynamic attributes and labels. Three case studies are presented: a reactor as a motivating example, flooding in a simulated de-Butanizer column, as a complex case, and foaming in an absorber as an industrial challenge. For the first case, detection accuracy is shown to increase by 14% while operating costs are reduced by 20%. Moreover, regarding the de-Butanizer column, the performance of the proposed strategy is shown to be 10% higher than the filtering strategy. Promising results are finally reported in regard of efficient strategies to deal with the presented problemPeer ReviewedPostprint (author's final draft

    Nonlinear Model Predictive Control Of A Distillation Column Using Hammerstein Model And Nonlinear Autoregressive Model With Exogenous Input.

    Get PDF
    Turus penyulingan adalah unit proses penting dalam industri penapisan petroleum dan kimia. Ia perlu dikawal hampir dengan keadaan-keadaan pengendalian yang optima demi insentif- nsentif ekonomi. Distillation column is an important processing unit in petroleum refining and chemical industries, and needs to be controlled close to the optimum operating conditions because of economic incentives

    Novel Formulation and Application of Model Predictive Control.

    Get PDF
    Model predictive control (MPC) has been extensively studied in academia and widely accepted in industry. This research has focused on the novel formulation of model predictive controllers for systems that can be decomposed according to their nonlinearity properties and several novel MPC applications including bioreactors modeled by population balance equations (PBE), gas pipeline networks, and cryogenic distillation columns. Two applications from air separation industries are studied. A representative gas pipeline network is modeled based on first principles. The full-order model is ill-conditioned, and reduced-order models are constructed using time-scale decomposition arguments. A linear model predictive control (LMPC) strategy is then developed based on the reduced-order model. The second application is a cryogenic distillation column. A low-order dynamic model based on nonlinear wave theory is developed by tracking the movement of the wave front. The low-order model is compared to a first-principles model developed with the commercial simulator HYSYS.Plant. On-line model adaptation is proposed to overcome the most restrictive modeling assumption. Extensions for multiple column modeling and nonlinear model predictive control (NMPC) also are discussed. The third application is a continuous yeast bioreactor. The autonomous oscillations phenomenon is modeled by coupling PBE model of the cell mass distribution to the rate limiting substrate mass balance. A controller design model is obtained by linearizing and temporally discretizing the ODES derived from spatial discretization of the PBE model. The MPC controller regulate the discretized cell number distribution by manipulating the dilution rate and the feed substrate concentration. A novel plant-wide control strategy is developed based on integration of LMPC and NMPC. It is motivated by the fact that most plants that can be decomposed into approximately linear subsystems and highly nonlinear subsystems. LMPCs and NMPCs are applied to the respective subsystems. A sequential solution algorithm is developed to minimize the amount of unknown information in the MPC design. Three coordination approaches are developed to reduce the amount of information unavailable due to the sequential MPC solution of the coupled subsystems and applied to a reaction/separation process. Furthermore, a multi-rate approach is developed to exploit time-scale differences in the subsystems

    Gaussian Process Model Predictive Control of An Unmanned Quadrotor

    Full text link
    The Model Predictive Control (MPC) trajectory tracking problem of an unmanned quadrotor with input and output constraints is addressed. In this article, the dynamic models of the quadrotor are obtained purely from operational data in the form of probabilistic Gaussian Process (GP) models. This is different from conventional models obtained through Newtonian analysis. A hierarchical control scheme is used to handle the trajectory tracking problem with the translational subsystem in the outer loop and the rotational subsystem in the inner loop. Constrained GP based MPC are formulated separately for both subsystems. The resulting MPC problems are typically nonlinear and non-convex. We derived 15 a GP based local dynamical model that allows these optimization problems to be relaxed to convex ones which can be efficiently solved with a simple active-set algorithm. The performance of the proposed approach is compared with an existing unconstrained Nonlinear Model Predictive Control (NMPC). Simulation results show that the two approaches exhibit similar trajectory tracking performance. However, our approach has the advantage of incorporating constraints on the control inputs. In addition, our approach only requires 20% of the computational time for NMPC.Comment: arXiv admin note: text overlap with arXiv:1612.0121
    corecore