932 research outputs found

    Indirect predictive control techniques for a matrix converter operating at fixed switching frequency

    Get PDF
    The following paper presents a novel indirect model predictive control strategy for a direct matrix converter (DMC). The direct matrix converter has a large number of available switching states and therefore the implementation of predictive control techniques require high computational resources. In addition, the simultaneous selection of weighting factors for the control of input and output variables of the converter complicates the system tuning. In this paper, two indirect model predictive control strategies are proposed in order to reduce the computational cost and by doing so avoid the use of weighting factors. The proposal is enhanced with a fixed switching frequency strategy in order to improve the performance of the full system. Results confirm the feasibility of the proposal by demonstrating that it is an alternative to classical predictive control strategies for the direct matrix converter.CONACYT – Consejo Nacional de Ciencia y Tecnologí

    Indirect model predictive current control techniques for a direct matrix converter

    Get PDF
    The direct matrix converter has twenty-seven available switching states which implies that the implementation of predictive control techniques in this converter requires high computational cost while an adequate selection of weighting factors in order to control both input and output sides of the converter. In this paper, two indirect model predictive current control strategies are proposed in order to simplify the computational cost while avoiding the use of weighting factors. Both methods are based on the fictitious dc-link concept, which has been used in the past for the classical modulation and control techniques of the direct matrix converter. Simulated results confirm the feasibility of the proposed techniques demonstrating that they are an alternative to classical predictive control strategies for the direct matrix converter

    A simple current control strategy for a four-leg indirect matrix converter

    Get PDF
    In this paper the experimental validation of a predictive current control strategy for a four-leg indirect matrix converter is presented. The four-leg indirect matrix converter can supply energy to an unbalanced three-phase load whilst providing a path for the zero sequence load. The predictive current control technique is based on the optimal selection among the valid switching states of the converter by evaluating a cost function, resulting in a simple approach without the necessity for modulators. Furthermore, zero dc-link current commutation is achieved by synchronizing the state changes in the input stage with the application of a zero voltage space vector in the inverter stage. Simulation results are presented and the strategy is experimentally validated using a laboratory prototype

    Sensorless Predictive Direct Power Control PDPC_SVM For PWM Converter Under Different Input Voltage Conditions

    Get PDF
    In this paper, a new virtual flux (VF) based predictive direct power control (VF_PDPC) applied for three-phase pulse width modulation (PWM) rectifier is proposed. The virtual flux estimation is performed using a pure integrator in series with a new adaptive algorithm in order to cancel dc offset and harmonic distortions in the estimated VF. The introduced structure is able to produce two virtual flux positive sequence components orthogonal output signals under unbalanced and distorted voltage conditions. The main features of the proposed virtual flux estimator are, it's simple structure, accuracy, and fast VF estimation over the excited integrators. Therefore,  the estimated VF is then used for robust sensorless VF-PDPC with a constant switching frequency using space vector modulation (SVM) and tested through numerical simulations. The instantaneous active and reactive powers provided by orthogonal (VF) positive sequence components are directly controlled. More importantly, this configuration gives quasi-sinusoidal and balanced current under different input voltage conditions without using the power compensation methods. The results of the simulation confirmed the validity of the proposed virtual flux algorithm and demonstrated excellent performance under different input voltage conditions, complete rejection of disturbances

    Novel single-phase five-level VIENNA-type rectifier with model predictive current control

    Get PDF
    A novel single-phase five-level active rectifier based on the VIENNA-type rectifier with model predictive current control is presented. The proposed topology operates in unidirectional mode, imposing a sinusoidal grid-side current with unitary power factor. A unidirectional electric vehicle battery charger is the target application in which the proposed rectifier is used; however, it can also be used as an active rectifier for other purposes aiming to improve the efficiency of ac-to-dc rectification. The model predictive current control is used to select the active rectifier state during each sampling period, trying to minimize the grid current error and obtain low total harmonic distortion. The suitability and performance of the proposed topology of active rectifier, as well as the principle of operation and the digital control algorithm, are evaluated through simulation and experimental results.This work has been supported by COMPETE: POCI-01- 0145–FEDER–007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 – POCI – 01–0145–FEDER–016434.info:eu-repo/semantics/publishedVersio

    A novel control strategy based on predictive control for a bidirectional interleaved three-phase converter

    Get PDF
    An experimental confirmation of predictive control applied to a bidirectional interleaved three-phase (BIT) converter is presented. The BIT converter is a powerful solution for numerous applications, mainly, renewables interface, motor drivers, active rectifiers, and active power filters. However, a precise and robust digital control strategy is required, maintaining a low computational effort. In this paper, a predictive control based on continuous control set is proposed as a new control scheme for the BIT converter, permitting the control of the ac side current with fixed switching frequency and with a faster response. The predictive control scheme applied to the BIT converter is defined along the paper, evidencing in detail the digital employment aspects according to the discrete-time model of the BIT converter. An explicit experimental validation under realistic operating conditions is presented using a developed laboratorial prototype, highlighting the convenience of the control applied to the BIT converter.This work has been supported by FCT – Fundação para a Ciência e Tecnologia in the scope of the project: PEstUID/CEC/00319/2013. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation < COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT < Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015< POCI< 01<0145<FEDER<016434. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency.info:eu-repo/semantics/publishedVersio

    Predictive current control with instantaneous reactive power minimization for a four-leg indirect matrix converter

    Get PDF
    This paper presents the experimental valida¬tion of a predictive current control strategy with minimiza¬tion of the instantaneous reactive input power for a Four-Leg Indirect Matrix Converter (4Leg-IMC). The topology includes an input matrix converter stage, which provides the dc voltage for a four-leg voltage source converter (VSC) output stage. The VSC’s fourth leg provides a path for the zero sequence load current. The control technique is based on a finite control set model predictive control (FCS-MPC) strategy, whereby the switching states for the input and out¬put converters are selected by evaluating a predictive cost function. This results in a simpler approach than that seen in other well-known modulation methods, such as three-dimensional space vector modulation (3D-SVM). Positive dc voltage, (a requirement for the safe operation of the IMC) and minimization of the instantaneous input reactive power are obtained, while maintaining good tracking of the load reference currents. Furthermore, soft switching is achieved by synchronizing the state changes in the input stage with the application of zero voltage space vectors in the inverter stage. The control strategy is experimentally verified using a laboratory prototype

    Predictive control in matrix converters. Part I, Principles, topologies and applications

    Get PDF
    This paper presents an overview of the predictive control principles applied to matrix converters and also the different topologies where this control technique is applied. It will be shown that the predictive strategy is a promising alternative to control matrix converters due to its simplicity and flexibility to include additional aspects in the control being suitable for different industrial applications

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    High-performance motor drives

    Get PDF
    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from less than 1 W up to several dozen megawatts
    • …
    corecore