32 research outputs found

    Predictive control for spacecraft rendezvous in an elliptical orbit using an FPGA

    Get PDF
    A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous man{\oe}uvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of man{\oe}uvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet.This work was supported by the Engineering and Physical Sciences Research Council (Grant EP/G030308/1) as well as industrial support from Xilinx, Mathworks and the European Space Agency.European Control Conference 2013 (ECC13), July 17-19, Zurich, Switzerlan

    Embedded and validated control algorithms for the spacecraft rendezvous

    Get PDF
    L'autonomie est l'une des préoccupations majeures lors du développement de missions spatiales que l'objectif soit scientifique (exploration interplanétaire, observations, etc) ou commercial (service en orbite). Pour le rendez-vous spatial, cette autonomie dépend de la capacité embarquée de contrôle du mouvement relatif entre deux véhicules spatiaux. Dans le contexte du service aux satellites (dépannage, remplissage additionnel d'ergols, correction d'orbite, désorbitation en fin de vie, etc), la faisabilité de telles missions est aussi fortement liée à la capacité des algorithmes de guidage et contrôle à prendre en compte l'ensemble des contraintes opérationnelles (par exemple, saturation des propulseurs ou restrictions sur le positionnement relatif entre les véhicules) tout en maximisant la durée de vie du véhicule (minimisation de la consommation d'ergols). La littérature montre que ce problème a été étudié intensément depuis le début des années 2000. Les algorithmes proposés ne sont pas tout à fait satisfaisants. Quelques approches, par exemple, dégradent les contraintes afin de pouvoir fonder l'algorithme de contrôle sur un problème d'optimisation efficace. D'autres méthodes, si elles prennent en compte l'ensemble du problème, se montrent trop lourdes pour être embarquées sur de véritables calculateurs existants dans les vaisseaux spatiaux. Le principal objectif de cette thèse est le développement de nouveaux algorithmes efficaces et validés pour le guidage et le contrôle impulsif des engins spatiaux dans le contexte des phases dites de "hovering" du rendez-vous orbital, i.e. les étapes dans lesquelles un vaisseau secondaire doit maintenir sa position à l'intérieur d'une zone délimitée de l'espace relativement à un autre vaisseau principal. La première contribution présentée dans ce manuscrit utilise une nouvelle formulation mathématique des contraintes d'espace pour le mouvement relatif entre vaisseaux spatiaux pour la conception d'algorithmes de contrôle ayant un traitement calculatoire plus efficace comparativement aux approches traditionnelles. La deuxième et principale contribution est une stratégie de contrôle prédictif qui assure la convergence des trajectoires relatives vers la zone de "hovering", même en présence de perturbations ou de saturation des actionneurs. Un travail spécifique de développement informatique a pu démontrerl'embarquabilité de ces algorithmes de contrôle sur une carte contenant un microprocesseur LEON3 synthétisé sur FPGA certifié pour le vol spatial, reproduisant les performances des dispositifs habituellement utilisés en vol. Finalement, des outils d'approximation rigoureuse de fonctions ont été utilisés pour l'obtention des solutions validées des équations décrivant le mouvement relatif linéarisé, permettant ainsi une propagation certifiée simple des trajectoires relatives via des polynômes et la vérification du respect des contraintes du problème.Autonomy is one of the major concerns during the planning of a space mission, whether its objective is scientific (interplanetary exploration, observations, etc.) or commercial (service in orbit). For space rendezvous, this autonomy depends on the on-board capacity of controlling the relative movement between two spacecraft. In the context of satellite servicing (troubleshooting, propellant refueling, orbit correction, end-of-life deorbit, etc.), the feasibility of such missions is also strongly linked to the ability of the guidance and control algorithms to account for all operational constraints (for example, thruster saturation or restrictions on the relative positioning between the vehicles) while maximizing the life of the vehicle (minimizing propellant consumption). The literature shows that this problem has been intensively studied since the early 2000s. However, the proposed algorithms are not entirely satisfactory. Some approaches, for example, degrade the constraints in order to be able to base the control algorithm on an efficient optimization problem. Other methods accounting for the whole set of constraints of the problem are too cumbersome to be embedded on real computers existing in the spaceships. The main object of this thesis is the development of new efficient and validated algorithms for the impulsive guidance and control of spacecraft in the context of the so-called "hovering" phases of the orbital rendezvous, i.e. the stages in which a secondary vessel must maintain its position within a bounded area of space relatively to another main vessel. The first contribution presented in this manuscript uses a new mathematical formulation of the space constraints for the relative motion between spacecraft for the design of control algorithms with more efficient computational processing compared to traditional approaches. The second and main contribution is a predictive control strategy that has been formally demonstrated to ensure the convergence of relative trajectories towards the "hovering" zone, even in the presence of disturbances or saturation of the actuators. Specific computational developments have demonstrated the embeddability of these control algorithms on a board containing a FPGA-synthesized LEON3 microprocessor certified for space flight, reproducing the performance of the devices usually used in flight. Finally, tools for rigorous approximation of functions were used to obtain validated solutions of the equations describing the linearized relative motion, allowing a simple certified propagation of the relative trajectories via polynomials and the verification of the respect of the constraints of the problem

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Guidance and robust control methods for the approach phase between two orbital vehicles with coupling between translational and rotational motions

    Get PDF
    Les techniques liées au vol en formation et aux opérations de proximité de satellites autonomes font partie des technologies opérationnelles spatiales les plus marquantes et les plus ambitieuses de ces dernières années. En particulier, cela nécessite la complète maitrise des phases de rendez-vous proche et de survol par un satellite actif avec un satellite, une station ou un débris passif. Le développement de systèmes GNC (Guidage Navigation Contrôle) associés performants et sûrs repose sur la connaissance d'un modèle dynamique réalisant un bon compromis entre faible complexité et prise en compte suffisante des principales caractéristiques dynamiques et cinématiques de ce type de systèmes. La première partie de cette thèse est consacrée au développement d'une modélisation unifiée de la dynamique relative couplée entre un satellite coopératif chasseur et un satellite cible non coopérative. En effet, lorsque deux satellites sont proches l'un de l'autre, ils ne peuvent plus être traités comme des masses ponctuelles, car leur forme et leur taille affectent le mouvement relatif entre les points de masse décentralisés, conduisant à un couplage des mouvements de translation et de rotation. Ce développement est abordé de manière progressive: le mouvement de translation relatif non linéaire est décrit sous hypothèses képlériennes dans le repère orbital de la cible ainsi que le modèle linéarisé associé. Ensuite, le modèle non linéaire d'attitude relative est présenté au moyen des paramètres d'Euler-Rodrigues. Enfin, le formalisme des quaternions duaux est utilisé afin d'obtenir le modèle relatif couplé en translation et en attitude. La phase de modélisation du mouvement relatif linéaire de translation a ainsi permis de mettre en évidence certaines transformations de coordonnées conduisant à une caractérisation intéressante des trajectoires périodiques du chasseur et ainsi de proposer un premier type de loi de contrôle de guidage pour la phase d'approche et de survol. Dans l'ensemble de notre travail, nous considérons un chasseur équipé de propulseurs chimiques et l'hypothèse classique des poussées impulsionnelles. Ce type de systèmes dynamiques conciliant dynamique continue et contrôle impulsionnel se définit naturellement comme une classe particulière de systèmes dynamiques hybrides. Plusieurs lois de contrôle hybrides sont alors proposées afin de stabiliser le chasseur sur une trajectoire de référence périodique proche de la cible. Les propriétés de stabilité et de convergence de ces différentes lois sont analysées et de nombreuses simulations numériques montrent les forces et les faiblesses de chaque contrôleur en termes d'indices de performance comme le temps de convergence, la consommation ainsi que des contraintes de sécurité. Dans un second temps, des contraintes opérationnelles supplémentaires (contraintes de visibilité par exemple) sont prises en considération en imposant une direction d'approche rectiligne (glideslope) au chasseur. Cette trajectoire impose au satellite chasseur de suivre une droite dans n'importe quelle direction du repère local reliant l'emplacement courant du chasseur à sa destination finale. Sous l'hypothèse de propulsion impulsionnelle, les résultats existant dans la littérature pour ce type d'approche ont été généralisés aux orbites elliptiques en identifiant une nouvelle formulation du problème comprenant des degrés de liberté utiles qui permettent de minimiser la consommation de carburant tout en contrôlant l'excursion de la trajectoire libre en dehors de la droite de glideslope en la confinant dans un couloir d'approche défini par l'utilisateur. La synthèse des lois de guidage ainsi obtenues repose sur la résolution de problèmes d'optimisation SDP dans le cas général ou linéaire pour les cas plus simples d'approche standards du type V-bar ou R-bar.The techniques related to formation flying and proximity operations of autonomous satellites belong to the most significant and challenging operational space technologies of the last years. In particular, they require full mastery of the close-range rendezvous and observation phases by an active satellite with a passive satellite, station or debris. The development of efficient and safe associated GNC systems relies on the knowledge of a dynamic model that achieves a good trade-off between low complexity and sufficient inclusion of the main dynamic and kinematic characteristics of this type of systems.The first part of this thesis is devoted to the development of a unified modeling of the relative coupled dynamics between a cooperative chaser satellite and a non-cooperative target satellite. Indeed, when two satellites are close to each other, they can no longer be treated as point masses because their shape and size affect the relative motion between the decentralized points, leading to a translational-attitude motions coupling. This development is addressed in a progressive way: the relative nonlinear translational motion is described under Keplerian assumptions in the target's orbital reference frame, as well as the associated linearized model. Then, the nonlinear relative attitude model is presented by means of the Euler-Rodrigues parameters. Finally, the dual quaternion formalism is used to obtain the relative translational and attitude coupled model. The modeling phase concerning the linear relative translational motion has allowed us to highlight certain coordinates transformations leading to an interesting characterization of the chaser's periodic trajectories and thus, to propose a first type of control law for the close-phase rendezvous and observation phases.All along this work, we consider a chaser satellite equipped with chemical thrusters under the classical hypothesis of impulsive thrusts. This type of dynamic systems gathering continuous dynamics and impulsive control naturally belongs to a particular class of dynamical hybrid systems. Several hybrid control laws are then proposed in order to stabilize the chaser on a periodic reference trajectory close to the target. The stability and convergence properties of these different laws are analysed and several numerical simulations show the strengths and weaknesses of each controller in terms of performance indices such as convergence time, consumption and safety constraints. In a second step, additional operational constraints (line-of-sight constraints for example) are taken into account by imposing a rectilinear (glideslope) direction to the chaser. This trajectory requires the chaser satellite to follow a straight line in any direction of the local reference frame and connecting the current location of the chaser to its final destination. Under the impulsive propulsion assumptions, the results in the literature for this type of approach have been generalized to elliptic orbits by identifying a new formulation of the problem including useful degrees of freedom, which allow minimizing the fuel consumption while controlling the humps of the trajectory outside the glideslope line by enclosing it in a user-defined approach corridor. Guidance laws are therefore synthetized via the solution of an SDP optimisation problem in the general case and via a linear programming when considering standard cases like the V-bar or R-bar approaches

    Mars Aerocapture Systems Study

    Get PDF
    Mars Aerocapture Systems Study (MASS) is a detailed study of the application of aerocapture to a large Mars robotic orbiter to assess and identify key technology gaps. This study addressed use of an Opposition class return segment for use in the Mars Sample Return architecture. Study addressed mission architecture issues as well as system design. Key trade studies focused on design of aerocapture aeroshell, spacecraft design and packaging, guidance, navigation and control with simulation, computational fluid dynamics, and thermal protection system sizing. Detailed master equipment lists are included as well as a cursory cost assessment

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    Design and implementation of resilient attitude estimation algorithms for aerospace applications

    Get PDF
    Satellite attitude estimation is a critical component of satellite attitude determination and control systems, relying on highly accurate sensors such as IMUs, star trackers, and sun sensors. However, the complex space environment can cause sensor performance degradation or even failure. To address this issue, FDIR systems are necessary. This thesis presents a novel approach to satellite attitude estimation that utilizes an InertialNavigation System (INS) to achieve high accuracy with the low computational load. The algorithm is based on a two-layer Kalman filter, which incorporates the quaternion estimator(QUEST) algorithm, FQA, Linear interpolation (LERP)algorithms, and KF. Moreover, the thesis proposes an FDIR system for the INS that can detect and isolate faults and recover the system safely. This system includes two-layer fault detection with isolation and two-layered recovery, which utilizes an Adaptive Unscented Kalman Filter (AUKF), QUEST algorithm, residual generators, Radial Basis Function (RBF) neural networks, and an adaptive complementary filter (ACF). These two fault detection layers aim to isolate and identify faults while decreasing the rate of false alarms. An FPGA-based FDIR system is also designed and implemented to reduce latency while maintaining normal resource consumption in this thesis. Finally, a Fault Tolerance Federated Kalman Filter (FTFKF) is proposed to fuse the output from INS and the CNS to achieve high precision and robust attitude estimation.The findings of this study provide a solid foundation for the development of FDIR systems for various applications such as robotics, autonomous vehicles, and unmanned aerial vehicles, particularly for satellite attitude estimation. The proposed INS-based approach with the FDIR system has demonstrated high accuracy, fault tolerance, and low computational load, making it a promising solution for satellite attitude estimation in harsh space environment

    Study of the Business Model of three Earth Observation (EO) companies already present in the Very Low Earth Orbit market (VLEO)

    Get PDF
    The emergence of a new private spaceflight industry has taken the Earth Observation (EO) sector by surprise. NewSpace companies are challenging the traditional satellite sector by addressing their services to mass market requirements of high-quality and low-cost EO. As part of the DISCOVERER project, this study aims to determine the Key Success Factors to consider by a new EO company at Low Earth Orbit (LEO). Hence, three businesses fitting the description were analyzed with the Case Study Methodology to establish their Business Model Canvas (BMC), associated Patterns, and Key Success Factors. The investigation consolidated the newly proposed Democratizing Business Model Pattern and added new characteristics. Successful EO NewSpace firms are getting divided between integrated operators, integrated manufacturers, and end-user specialists. A new EO company should consider the Democratizing Pattern success factors and the Vertically Integrated Strategies (VIS), depending on its disruptive idea and resource capabilities. Further research is needed to identify new factors, strengthen the validity of the Pattern, and VIS tendencies
    corecore