7,000 research outputs found

    Pain detection with bioimpedance methodology from 3-dimensional exploration of nociception in a postoperative observational trial

    Get PDF
    Although the measurement of dielectric properties of the skin is a long-known tool for assessing the changes caused by nociception, the frequency modulated response has not been considered yet. However, for a rigorous characterization of the biological tissue during noxious stimulation, the bioimpedance needs to be analyzed over time as well as over frequency. The 3-dimensional analysis of nociception, including bioimpedance, time, and frequency changes, is provided by ANSPEC-PRO device. The objective of this observational trial is the validation of the new pain monitor, named as ANSPEC-PRO. After ethics committee approval and informed consent, 26 patients were monitored during the postoperative recovery period: 13 patients with the in-house developed prototype ANSPEC-PRO and 13 with the commercial device MEDSTORM. At every 7 min, the pain intensity was measured using the index of Anspec-pro or Medstorm and the 0-10 numeric rating scale (NRS), pre-surgery for 14 min and post-anesthesia for 140 min. Non-significant differences were reported for specificity-sensitivity analysis between ANSPEC-PRO (AUC = 0.49) and MEDSTORM (AUC = 0.52) measured indexes. A statistically significant positive linear relationship was observed between Anspec-pro index and NRS (r(2) = 0.15, p < 0.01). Hence, we have obtained a validation of the prototype Anspec-pro which performs equally well as the commercial device under similar conditions

    Depth of anesthesia control using internal model control techniques

    Get PDF
    The major difficulty in the design of closed-loop control during anaesthesia is the inherent patient variability due to differences in demographic and drug tolerance. These discrepancies are translated into the pharmacokinetics (PK), and pharmacodynamics (PD). These uncertainties may affect the stability of the closed loop control system. This paper aims at developing predictive controllers using Internal Model Control technique. This study develops patient dose-response models and to provide an adequate drug administration regimen for the anaesthesia to avoid under or over dosing of the patients. The controllers are designed to compensate for patients inherent drug response variability, to achieve the best output disturbance rejection, and to maintain optimal set point response. The results are evaluated compared with traditional PID controller and the performance is confirmed in our simulation

    Anesthesiologist in the loop and predictive algorithm to maintain hypnosis while mimicking surgical disturbance

    Get PDF
    Many regulatory loops in drug delivery systems for depth of anesthesia optimization problem consider only the effect of the controller output on the patient pharmacokinetic and pharmacodynamic response. In reality, these drug assist devices are over-ruled by the anesthesiologist for setpoint changes, bolus intake and additional disturbances from the surgical team. Additionally, inter-patient variability imposes variations in the dynamic response and often intra-patient variability is also present. This paper introduces for the first time in literature a study on the effect of both controller and anesthesiologist in the loop for hypnosis regulation. Among the many control loops, model based predictive control is closest to mimic the anticipatory action of the anesthesiologist in real life and can actively deal with issues as time lags, delays, constraints, etc. This control algorithm is here combined with the action of the anesthesiologist. A disturbance signal to mimic surgical excitation has been introduced and a database of 25 patients has been derived from clinical insight. The results given in this paper reveal the antagonist effect in closed loop of the intervention from the anaesthesiologist when additional bolus intake is present. This observation explains induced dynamics in the closed loop observed in clinical trials and may be used as a starting point for next step in developing tools for improved assistance in clinical care. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Advanced model-based control studies for the induction and maintenance of intravenous anaesthesia

    Get PDF
    This paper describes strategies toward model-based automation of intravenous anaesthesia employing advanced control techniques. In particular, based on a detailed compartmental mathematical model featuring pharmacokinetic and pharmacodynamics information, two alternative model predictive control strategies are presented: a model predictive control strategy, based on online optimization, the extended predictive self-adaptive control and a multiparametric control strategy based on offline optimization, the multiparametric model predictive control. The multiparametric features to account for the effect of nonlinearity and the impact of estimation are also described. The control strategies are tested on a set of 12 virtually generated patient models for the regulation of the depth of anaesthesia by means of the bispectral index (BIS) using Propofol as the administrated anaesthetic. The simulations show fast response, suitability of dose, and robustness to induce and maintain the desired BIS setpoint

    Closed-loop control of anesthesia : survey on actual trends, challenges and perspectives

    Get PDF
    Automation empowers self-sustainable adaptive processes and personalized services in many industries. The implementation of the integrated healthcare paradigm built on Health 4.0 is expected to transform any area in medicine due to the lightning-speed advances in control, robotics, artificial intelligence, sensors etc. The two objectives of this article, as addressed to different entities, are: i) to raise awareness throughout the anesthesiologists about the usefulness of integrating automation and data exchange in their clinical practice for providing increased attention to alarming situations, ii) to provide the actualized insights of drug-delivery research in order to create an opening horizon towards precision medicine with significantly improved human outcomes. This article presents a concise overview on the recent evolution of closed-loop anesthesia delivery control systems by means of control strategies, depth of anesthesia monitors, patient modelling, safety systems, and validation in clinical trials. For decades, anesthesia control has been in the midst of transformative changes, going from simple controllers to integrative strategies of two or more components, but not achieving yet the breakthrough of an integrated system. However, the scientific advances that happen at high speed need a modern review to identify the current technological gaps, societal implications, and implementation barriers. This article provides a good basis for control research in clinical anesthesia to endorse new challenges for intelligent systems towards individualized patient care. At this connection point of clinical and engineering frameworks through (semi-) automation, the following can be granted: patient safety, economical efficiency, and clinicians' efficacy

    Advanced multiparametric optimization and control studies for anaesthesia

    Get PDF
    Anaesthesia is a reversible pharmacological state of the patient where hypnosis, analgesia and muscle relaxation are guaranteed and maintained throughout the surgery. Analgesics block the sensation of pain; hypnotics produce unconsciousness, while muscle relaxants prevent unwanted movement of muscle tone. Controlling the depth of anaesthesia is a very challenging task, as one has to deal with nonlinearity, inter- and intra-patient variability, multivariable characteristics, variable time delays, dynamics dependent on the hypnotic agent, model analysis variability, agent and stability issues. The modelling and automatic control of anaesthesia is believed to (i) benefit the safety of the patient undergoing surgery as side-effects may be reduced by optimizing the drug infusion rates, and (ii) support anaesthetists during critical situations by automating the drug delivery systems. In this work we have developed several advanced explicit/multi-parametric model predictive (mp-MPC) control strategies for the control of depth of anaesthesia. State estimation techniques are developed and used simultaneously with mp-MPC strategies to estimate the state of each individual patient, in an attempt to overcome the challenges of inter- and intra- patient variability, and deal with possible unmeasurable noisy outputs. Strategies to deal with the nonlinearity have been also developed including local linearization, exact linearization as well as a piece-wise linearization of the Hill curve leading to a hybrid formulation of the patient model and thereby the development of multiparametric hybrid model predictive control methodology. To deal with the inter- and intra- patient variability, as well as the noise on the process output, several robust techniques and a multiparametric moving horizon estimation technique have been design and implemented. All the studies described in the thesis are performed on clinical data for a set of 12 patients who underwent general anaesthesia.Open Acces

    Machine learning prediction of burst suppression under general anesthesia

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2021-2022. Tutor/Director: Pedro Luís Gambús CerrilloDuring propofol-remifentanil induced general anesthesia, burst suppression (BS) EEG patterns commonly occur in around 50% of the patients, with an increasing incidence with age. However, this phenomenon has been reported to be an indicator of too high anesthetic doses and produce adverse outcomes such as postoperative delirium, cognitive deficits, and it has even reported to be a postoperative mortality predictor. In light of the above, the present study aims to address the lack of predictive techniques for BS occurrence anticipation by developing Machine Learning predictive models such as SVM, KNN, RF, and XGB. Therefore, a large dataset including different monitored parameters during propofol-remifentanil induced general anesthesia from many patients has been used for both training and testing the models, as well as for final validation of the selected model. Obtained results present an acceptable overall performance of the SVM model with a ROC-AUC score of 0.829, and a feature importance analysis shows a high influence of age and BIS value for the final prediction. Nonetheless, 25% of the predictions have been reported to have accuracies under 0.6, questioning the reliability of the model and making it useful as an orientative aiding tool for anesthesiologists, but not the ultimate decisive factor. Hence, further studies involving more variability on the data, validation techniques and confidence intervals for each process, and an exhaustive feature selection analysis, along with the repetition of the study with different ML algorithms should be performed to improve the predictive ability of the current model and achieve better performances

    Predictive modelling of Loss Of Consciousness under general anaesthesia

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2021-2022. Director: Pedro L. Gambú

    Event-based MPC for propofol administration in anesthesia

    Get PDF
    Background and Objective : The automatic control of anesthesia is a demanding task mostly due to the presence of nonlinearities, intra- and inter-patient variability and specific clinical requirements to be meet. The traditional approach to achieve the desired depth of hypnosis level is based on knowledge and experience of the anesthesiologist. In contrast to a typical automatic control system, their actions are based on events that are related to the effect of the administrated drug. Thus, it is interesting to build a control system that will be able to mimic the behavior of the human way of actuation, simultaneously keeping the advantages of an automatic system.Methods : In this work, an event-based model predictive control system is proposed and analyzed. The nonlinear patient model is used to form the predictor structure and its linear part is exploited to design the predictive controller, resulting in an individualized approach. In such a scenario, the BIS is the controlled variable and the propofol infusion rate is the control variable. The event generator governs the computation of control action applying a dead-band sampling technique. The proposed control architecture has been tested in simulation considering process noise and unmeasurable disturbances. The evaluation has been made for a set of patients using nonlinear pharmacokinetic/pharmacodynamic models allowing realistic tests scenarios, including inter- and intra-patient variability.Results For the considered patients dataset the number of control signal changes has been reduced of about 55% when compared to the classical control system approach and the drug usage has been reduced of about 2%. At the same time the control performance expressed by the integrated absolute error has been degraded of about 11%.Conclusions : The event-based MPC control system meets all the clinical requirements. The robustness analysis also demonstrates that the event-based architecture is able to satisfy the specifications in the presence of significant process noise and modelling errors related to inter- and intra-patient variability, providing a balanced solution between complexity and performance. (c) 2022 Elsevier B.V. All rights reserved
    corecore