102,487 research outputs found

    Selecting relevant predictors: impact of variable selection on model performance, uncertainty and applicability of models in environmental decision making

    Get PDF
    One of the crucial steps when developing models is the selection of appropriate variables. In this research we assessed the impact variable selection on the model performance and model applicability. Regression trees were built to understand the relationship between the ecological water quality and the physicalchemical and hydromorphological variables. Different model parameterizations and three combinations of explanatory variables were used for developing the trees. Once constructed, they were integrated with the water quality model (PEGASE) and used to simulate the future ecological water quality. These simulations were summarized per combination of explanatory variables and compared. Three key messages summarize our conclusions. First, it was confirmed that different parameterizations alter the statistical reliability of the trees produced. Secondly, it was found that statistical reliability of the models remained stable when different combinations of explanatory variables were implemented. The determination coefficient (R²) ranged from 0.68 to 0.86; Kappa statistic (K) ranged from 0.15 and 0.46; and the percentage of Correctly Classified Instances (CCI) from 33 to 59%. Thirdly, when applying the models on an independent dataset consisting of future physical-chemical water quality data, different conclusions may be taken, depending on the combination of variables used

    Predicting tree distributions in an East African biodiversity hotspot : model selection, data bias and envelope uncertainty

    Get PDF
    The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most ancient tropical rainforest on Earth. The forests are a global priority for biodiversity conservation and provide vital resources to the Tanzanian population. Here, we make a first attempt to predict the spatial distribution of 40 EAM tree species, using generalised additive models, plot data and environmental predictor maps at sub 1 km resolution. The results of three modelling experiments are presented, investigating predictions obtained by (1) two different procedures for the stepwise selection of predictors, (2) down-weighting absence data, and (3) incorporating an autocovariate term to describe fine-scale spatial aggregation. In response to recent concerns regarding the extrapolation of model predictions beyond the restricted environmental range of training data, we also demonstrate a novel graphical tool for quantifying envelope uncertainty in restricted range niche-based models (envelope uncertainty maps). We find that even for species with very few documented occurrences useful estimates of distribution can be achieved. Initiating selection with a null model is found to be useful for explanatory purposes, while beginning with a full predictor set can over-fit the data. We show that a simple multimodel average of these two best-model predictions yields a superior compromise between generality and precision (parsimony). Down-weighting absences shifts the balance of errors in favour of higher sensitivity, reducing the number of serious mistakes (i.e., falsely predicted absences); however, response functions are more complex, exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale patterns of occurrence and significantly improve explained deviance, though if important environmental constraints are omitted then model stability and explanatory power can be compromised. We conclude that the best modelling practice is contingent both on the intentions of the analyst (explanation or prediction) and on the quality of distribution data; generalised additive models have potential to provide valuable information for conservation in the EAMs, but methods must be carefully considered, particularly if occurrence data are scarce. Full results and details of all species models are supplied in an online Appendix. (C) 2008 Elsevier B.V. All rights reserved

    Functional foods : a conceptual model for assessing their safety and effectiveness

    Get PDF
    This report shows that the product-diet dilemma can be solved by developing a predictive model. The model integrates food intake data, dynamic consumption patterns and the production chain model and combines them with a risk-benefit approach

    Uncertainty propagation and speculation in projective forecasts of environmental change: a lake-eutrophication example

    Get PDF
    The issue of whether models developed for current conditions can yield correct predictions when used under changed control, as is often the case in environmental management, is discussed. Two models of different complexity are compared on the basis of performance criteria, but it appears that good performance at the calibration stage does not guarantee correctly predicted behavior. A requirement for the detection of such a failure of the model is that the prediction uncertainty range is known. Two techniques to calculate uncertainty propagation are presented and compared: a stochastic first-order error propagation based on the extended Kalman filter (EKF), and a newly developed and robust Monte Carlo set-membership procedure (MCSM). The procedures are applied to a case study of water quality, generating a projective forecast of the algal dynamics in a lake (Lake Veluwe) in response to management actions that force the system into a different mode of behavior. It is found that the forecast from the more complex model falls within the prediction uncertainty range, but its informative value is low due to large uncertainty bounds. As a substitute for time-consuming revisions of the model, educated speculation about parameter shifts is offered as an alternative approach to account for expected but unmodelled changes in the system

    Social science perspectives on natural hazards risk and uncertainty

    Get PDF

    The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia

    Get PDF
    Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies
    corecore