471 research outputs found

    Novel DVFS Methodologies For Power-Efficient Mobile MPSoC

    Get PDF
    Low power mobile computing systems such as smartphones and wearables have become an integral part of our daily lives and are used in various ways to enhance our daily lives. Majority of modern mobile computing systems are powered by multi-processor System-on-a-Chip (MPSoC), where multiple processing elements are utilized on a single chip. Given the fact that these devices are battery operated most of the times, thus, have limited power supply and the key challenges include catering for performance while reducing the power consumption. Moreover, the reliability in terms of lifespan of these devices are also affected by the peak thermal behaviour on the device, which retrospectively also make such devices vulnerable to temperature side-channel attack. This thesis is concerned with performing Dynamic Voltage and Frequency Scaling (DVFS) on different processing elements such as CPU & GPU, and memory unit such as RAM to address the aforementioned challenges. Firstly, we design a Computer Vision based machine learning technique to classify applications automatically into different categories of workload such that DVFS could be performed on the CPU to reduce the power consumption of the device while executing the application. Secondly, we develop a reinforcement learning based agent to perform DVFS on CPU and GPU while considering the user's interaction with such devices to optimize power consumption and thermal behaviour. Next, we develop a heuristic based automated agent to perform DVFS on CPU, GPU and RAM to optimize the same while executing an application. Finally, we explored the affect of DVFS on CPUs leading to vulnerabilities against temperature side-channel attack and hence, we also designed a methodology to secure against such attack while improving the reliability in terms of lifespan of such devices

    Analysing and Reducing Costs of Deep Learning Compiler Auto-tuning

    Get PDF
    Deep Learning (DL) is significantly impacting many industries, including automotive, retail and medicine, enabling autonomous driving, recommender systems and genomics modelling, amongst other applications. At the same time, demand for complex and fast DL models is continually growing. The most capable models tend to exhibit highest operational costs, primarily due to their large computational resource footprint and inefficient utilisation of computational resources employed by DL systems. In an attempt to tackle these problems, DL compilers and auto-tuners emerged, automating the traditionally manual task of DL model performance optimisation. While auto-tuning improves model inference speed, it is a costly process, which limits its wider adoption within DL deployment pipelines. The high operational costs associated with DL auto-tuning have multiple causes. During operation, DL auto-tuners explore large search spaces consisting of billions of tensor programs, to propose potential candidates that improve DL model inference latency. Subsequently, DL auto-tuners measure candidate performance in isolation on the target-device, which constitutes the majority of auto-tuning compute-time. Suboptimal candidate proposals, combined with their serial measurement in an isolated target-device lead to prolonged optimisation time and reduced resource availability, ultimately reducing cost-efficiency of the process. In this thesis, we investigate the reasons behind prolonged DL auto-tuning and quantify their impact on the optimisation costs, revealing directions for improved DL auto-tuner design. Based on these insights, we propose two complementary systems: Trimmer and DOPpler. Trimmer improves tensor program search efficacy by filtering out poorly performing candidates, and controls end-to-end auto-tuning using cost objectives, monitoring optimisation cost. Simultaneously, DOPpler breaks long-held assumptions about the serial candidate measurements by successfully parallelising them intra-device, with minimal penalty to optimisation quality. Through extensive experimental evaluation of both systems, we demonstrate that they significantly improve cost-efficiency of autotuning (up to 50.5%) across a plethora of tensor operators, DL models, auto-tuners and target-devices

    2023-2024 Boise State University Undergraduate Catalog

    Get PDF
    This catalog is primarily for and directed at students. However, it serves many audiences, such as high school counselors, academic advisors, and the public. In this catalog you will find an overview of Boise State University and information on admission, registration, grades, tuition and fees, financial aid, housing, student services, and other important policies and procedures. However, most of this catalog is devoted to describing the various programs and courses offered at Boise State

    General Course Catalog [2022/23 academic year]

    Get PDF
    General Course Catalog, 2022/23 academic yearhttps://repository.stcloudstate.edu/undergencat/1134/thumbnail.jp

    ControlPULP: A RISC-V On-Chip Parallel Power Controller for Many-Core HPC Processors with FPGA-Based Hardware-In-The-Loop Power and Thermal Emulation

    Full text link
    High-Performance Computing (HPC) processors are nowadays integrated Cyber-Physical Systems demanding complex and high-bandwidth closed-loop power and thermal control strategies. To efficiently satisfy real-time multi-input multi-output (MIMO) optimal power requirements, high-end processors integrate an on-die power controller system (PCS). While traditional PCSs are based on a simple microcontroller (MCU)-class core, more scalable and flexible PCS architectures are required to support advanced MIMO control algorithms for managing the ever-increasing number of cores, power states, and process, voltage, and temperature variability. This paper presents ControlPULP, an open-source, HW/SW RISC-V parallel PCS platform consisting of a single-core MCU with fast interrupt handling coupled with a scalable multi-core programmable cluster accelerator and a specialized DMA engine for the parallel acceleration of real-time power management policies. ControlPULP relies on FreeRTOS to schedule a reactive power control firmware (PCF) application layer. We demonstrate ControlPULP in a power management use-case targeting a next-generation 72-core HPC processor. We first show that the multi-core cluster accelerates the PCF, achieving 4.9x speedup compared to single-core execution, enabling more advanced power management algorithms within the control hyper-period at a shallow area overhead, about 0.1% the area of a modern HPC CPU die. We then assess the PCS and PCF by designing an FPGA-based, closed-loop emulation framework that leverages the heterogeneous SoCs paradigm, achieving DVFS tracking with a mean deviation within 3% the plant's thermal design power (TDP) against a software-equivalent model-in-the-loop approach. Finally, we show that the proposed PCF compares favorably with an industry-grade control algorithm under computational-intensive workloads.Comment: 33 pages, 11 figure

    It is too hot in here! A performance, energy and heat aware scheduler for Asymmetric multiprocessing processors in embedded systems.

    Get PDF
    Modern architecture present in self-power devices such as mobiles or tablet computers proposes the use of asymmetric processors that allow either energy-efficient or performant computation on the same SoC. For energy efficiency and performance consideration, the asymmetry resides in differences in CPU micro-architecture design and results in diverging raw computing capability. Other components such as the processor memory subsystem also show differences resulting in different memory transaction timing. Moreover, based on a bus-snoop protocol, cache coherency between processors comes with a peculiarity in memory latency depending on the processors operating frequencies. All these differences come with challenging decisions on both application schedulability and processor operating frequencies. In addition, because of the small form factor of such embedded systems, these devices generally cannot afford active cooling systems. Therefore thermal mitigation relies on dynamic software solutions. Current operating systems for embedded systems such as Linux or Android do not consider all these particularities. As such, they often fail to satisfy user expectations of a powerful device with long battery life. To remedy this situation, this thesis proposes a unified approach to deliver high-performance and energy-efficiency computation in each of its flavours, considering the memory subsystem and all computation units available in the system. Performance is maximized even when the device is under heavy thermal constraints. The proposed unified solution is based on accurate models targeting both performance and thermal behaviour and resides at the operating systems kernel level to manage all running applications in a global manner. Particularly, the performance model considers both the computation part and also the memory subsystem of symmetric or asymmetric processors present in embedded devices. The thermal model relies on the accurate physical thermal properties of the device. Using these models, application schedulability and processor frequency scaling decisions to either maximize performance or energy efficiency within a thermal budget are extensively studied. To cover a large range of application behaviour, both models are built and designed using a generative workload that considers fine-grain details of the underlying microarchitecture of the SoC. Therefore, this approach can be derived and applied to multiple devices with little effort. Extended evaluation on real-world benchmarks for high performance and general computing, as well as common applications targeting the mobile and tablet market, show the accuracy and completeness of models used in this unified approach to deliver high performance and energy efficiency under high thermal constraints for embedded devices

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Energy Aware Runtime Systems for Elastic Stream Processing Platforms

    Get PDF
    Following an invariant growth in the required computational performance of processors, the multicore revolution started around 20 years ago. This revolution was mainly an answer to power dissipation constraints restricting the increase of clock frequency in single-core processors. The multicore revolution not only brought in the challenge of parallel programming, i.e. being able to develop software exploiting the entire capabilities of manycore architectures, but also the challenge of programming heterogeneous platforms. The question of “on which processing element to map a specific computational unit?”, is well known in the embedded community. With the introduction of general-purpose graphics processing units (GPGPUs), digital signal processors (DSPs) along with many-core processors on different system-on-chip platforms, heterogeneous parallel platforms are nowadays widespread over several domains, from consumer devices to media processing platforms for telecom operators. Finding mapping together with a suitable hardware architecture is a process called design-space exploration. This process is very challenging in heterogeneous many-core architectures, which promise to offer benefits in terms of energy efficiency. The main problem is the exponential explosion of space exploration. With the recent trend of increasing levels of heterogeneity in the chip, selecting the parameters to take into account when mapping software to hardware is still an open research topic in the embedded area. For example, the current Linux scheduler has poor performance when mapping tasks to computing elements available in hardware. The only metric considered is CPU workload, which as was shown in recent work does not match true performance demands from the applications. Doing so may produce an incorrect allocation of resources, resulting in a waste of energy. The origin of this research work comes from the observation that these approaches do not provide full support for the dynamic behavior of stream processing applications, especially if these behaviors are established only at runtime. This research will contribute to the general goal of developing energy-efficient solutions to design streaming applications on heterogeneous and parallel hardware platforms. Streaming applications are nowadays widely spread in the software domain. Their distinctive characiteristic is the retrieving of multiple streams of data and the need to process them in real time. The proposed work will develop new approaches to address the challenging problem of efficient runtime coordination of dynamic applications, focusing on energy and performance management.Efter en oförĂ€nderlig tillvĂ€xt i prestandakrav hos processorer, började den flerkĂ€rniga processor-revolutionen för ungefĂ€r 20 Ă„r sedan. Denna revolution skedde till största del som en lösning till begrĂ€nsningar i energieffekten allt eftersom klockfrekvensen kontinuerligt höjdes i en-kĂ€rniga processorer. Den flerkĂ€rniga processor-revolutionen medförde inte enbart utmaningen gĂ€llande parallellprogrammering, m.a.o. förmĂ„gan att utveckla mjukvara som anvĂ€nder sig av alla delelement i de flerkĂ€rniga processorerna, men ocksĂ„ utmaningen med programmering av heterogena plattformar. FrĂ„gestĂ€llningen ”pĂ„ vilken processorelement skall en viss berĂ€kning utföras?” Ă€r vĂ€l kĂ€nt inom ramen för inbyggda datorsystem. Efter introduktionen av grafikprocessorer för allmĂ€nna berĂ€kningar (GPGPU), signalprocesserings-processorer (DSP) samt flerkĂ€rniga processorer pĂ„ olika system-on-chip plattformar, Ă€r heterogena parallella plattformar idag omfattande inom mĂ„nga domĂ€ner, frĂ„n konsumtionsartiklar till mediaprocesseringsplattformar för telekommunikationsoperatörer. Processen att placera berĂ€kningarna pĂ„ en passande hĂ„rdvaruplattform kallas för utforskning av en designrymd (design-space exploration). Denna process Ă€r mycket utmanande för heterogena flerkĂ€rniga arkitekturer, och kan medföra fördelar nĂ€r det gĂ€ller energieffektivitet. Det största problemet Ă€r att de olika valmöjligheterna i designrymden kan vĂ€xa exponentiellt. Enligt den nuvarande trenden som förespĂ„r ökad heterogeniska aspekter i processorerna Ă€r utmaningen att hitta den mest passande placeringen av berĂ€kningarna pĂ„ hĂ„rdvaran Ă€nnu en forskningsfrĂ„ga inom ramen för inbyggda datorsystem. Till exempel, den nuvarande schemalĂ€ggaren i Linux operativsystemet Ă€r inkapabel att hitta en effektiv placering av berĂ€kningarna pĂ„ den underliggande hĂ„rdvaran. Det enda mĂ€tsĂ€ttet som anvĂ€nds Ă€r processorns belastning vilket, som visats i tidigare forskning, inte motsvarar den verkliga prestandan i applikationen. AnvĂ€ndning av detta mĂ€tsĂ€tt vid resursallokering resulterar i slöseri med energi. Denna forskning hĂ€rstammar frĂ„n observationerna att dessa tillvĂ€gagĂ„ngssĂ€tt inte stöder det dynamiska beteendet hos ström-processeringsapplikationer (stream processing applications), speciellt om beteendena bara etableras vid körtid. Denna forskning kontribuerar till det allmĂ€nna mĂ„let att utveckla energieffektiva lösningar för ström-applikationer (streaming applications) pĂ„ heterogena flerkĂ€rniga hĂ„rdvaruplattformar. Ström-applikationer Ă€r numera mycket vanliga i mjukvarudomĂ€n. Deras distinkta karaktĂ€r Ă€r inlĂ€sning av flertalet dataströmmar, och behov av att processera dem i realtid. Arbetet i denna forskning understöder utvecklingen av nya sĂ€tt för att lösa det utmanade problemet att effektivt koordinera dynamiska applikationer i realtid och fokus pĂ„ energi- och prestandahantering

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an ParallelitĂ€t und HeterogenitĂ€t. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die GesamtausfĂŒhrungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die ZuverlĂ€ssigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen EinschrĂ€nkungen und Randbedingungen des Systems berĂŒcksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese KomplexitĂ€t heterogener Systeme macht es unmöglich, alle potenziellen SystemzustĂ€nde und UmwelteinflĂŒsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten KĂŒhlkapazitĂ€ten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die WĂ€rmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungĂŒnstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungĂŒnstige oder fehlerhafte SystemzustĂ€nde vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die WĂ€rmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzufĂŒhren. Ein Konzept, das diese komplexe Aufgabe fĂŒr den Entwickler ĂŒbernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an VerĂ€nderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwĂŒnschten Ergebnissen fĂŒhren. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und WiderstandsfĂ€higkeit gegenĂŒber Ă€ußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu ĂŒberwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen ĂŒber das zukĂŒnftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwĂ€hlen und auszulösen, die das System optimieren und unerwĂŒnschte ZustĂ€nde vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu ĂŒbertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat fĂŒr die Umsetzung des Organic Computing-Ansatzes, da sie bereits die AusfĂŒhrung von Anwendungen ĂŒberwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: ‱ Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern ‱ Vorhersage zukĂŒnftiger SystemzustĂ€nde durch Analyse des vergangenen Verhaltens ‱ Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von SystemzustĂ€nden auf zwei Arten. ZunĂ€chst fĂŒhre ich eine neuartige heuristische Metrik zur Berechnung der ZuverlĂ€ssigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des AusfĂŒhrungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen AusfĂŒhrungen einer Anwendung zu berechnen, um eine bestimmte ErgebniszuverlĂ€ssigkeit, also eine Mindestwahrscheinlichkeit fĂŒr ein korrektes Ergebnis, zu gewĂ€hrleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der fĂŒr OpenMP-Tasks notwendigen Profiling-DurchlĂ€ufe durch Thread-Interpolation und ÜberprĂŒfungen des Skalierungsverhaltens. ZusĂ€tzlich untersuche ich die Vorhersage von OpenCL Task-AusfĂŒhrungszeiten. Die PrĂ€diktoren der AusfĂŒhrungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukĂŒnftige SystemzustĂ€nde vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der AusfĂŒhrungsdatenbank ermöglicht dies die SchĂ€tzung der anstehenden Kosten, die das System zu bewĂ€ltigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste PrĂ€diktor zielt darauf ab, neue Instanzen unabhĂ€ngiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet AusfĂŒhrungsmuster abhĂ€ngiger Anwendungen und sagt auf dieser Grundlage zukĂŒnftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-PrĂ€diktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die SystemĂŒberwachung und die Vorhersage zukĂŒnftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. BeschrĂ€nkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgefĂŒhrt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefĂŒgt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion fĂŒr List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen fĂŒr dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die PrioritĂ€ten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrĂŒcken. Da statische PrioritĂ€ten in stark ausgelasteten Systemen zu Starvation fĂŒhren können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die PrioritĂ€ten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit ĂŒber alle Tasks und die Wartezeit fĂŒr Tasks mit niedrigerer PrioritĂ€t. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an ParallelitĂ€t zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur AusfĂŒhrung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgefĂŒhrt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfĂŒgt, prĂŒft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer AusfĂŒhrung begonnen haben, neu auf AusfĂŒhrungseinheiten abzubilden. Zusammenfassend lĂ€sst sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die KomplexitĂ€t fĂŒr Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz fĂŒr eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden BeitrĂ€ge zur Erweiterung des Stands der Forschung: ‱ EinfĂŒhrung einer neuartigen heuristischen Metrik zur Messung der ZuverlĂ€ssigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlĂ€ssig zu erkennen. DarĂŒber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestĂ€tigt. ‱ Vorschlag eines Vorhersagemodells fĂŒr die AusfĂŒhrungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69 %69\,\% auszuwĂ€hlen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausfĂŒhrt, erzielt eine Genauigkeit von 25 %25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83 %83\,\%. ‱ Bereitstellung von zwei PrĂ€diktoren fĂŒr kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhĂ€ngige Tasks, die stĂ€ndig neue Task-Instanzen erstellen, der zweite abhĂ€ngige Anwendungen, die AusfĂŒhrungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33 %4,33\,\% fĂŒr sporadische und 0,002 %0,002 \,\% fĂŒr periodische Tasks. DarĂŒber hinaus werden Tasks mit einem aperiodischen AusfĂŒhrungsschema zuverlĂ€ssig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6 %77,6 \,\% fĂŒr die Vorhersage der nĂ€chsten anstehenden Anwendung und deren Startzeit. ‱ EinfĂŒhrung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthĂ€lt u.a. ein modifiziertes XCS, fĂŒr dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell fĂŒr diesen Zweck entwickelten Simulators zur Berechnung von Task-AusfĂŒhrungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion fĂŒr List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fĂŒnfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4 %10,4\,\% bzw. 26,7 s26,7\,s, des Energieverbrauchs um 4,7 %4,7\,\% bzw. 2061,1 J2061,1\,J und der maximalen Temperatur der GPU um 3,6 %3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur ĂŒber alle CPU-Kerne erhöht sich um 6 %6\,\% bzw. 2,3 K2,3\,K. ‱ Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings fĂŒr einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-PrioritĂ€ten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-PrioritĂ€ten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75 %3,75\,\% und 3,16 %3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer PrioritĂ€t um bis zu 25,67 %25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgefĂŒhrt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74 %19,74\,\% und 20,91 %20,91\,\% bzw. etwa 2,7 s2,7\,s und 3 s3\,s
    • 

    corecore