316 research outputs found

    MACHINE LEARNING FOR 6G ENHANCED ULTRA-RELIABLE AND LOW-LATENCY SERVICES

    Get PDF

    Reference Scenarios and Key Performance Indicators for 5G Ultra-dense Networks

    Get PDF
    The so-called 5G will revolutionize the way we live, and work. In order to demonstrate the profound changes, we can expect to experience within the next 5 to 10 years, we present use cases for the planned research within the TeamUp5G project. Some use cases are strongly linked to the network layer and aim at developing solutions capable of optimizing the main promising benefits of 5G: extremely low latency and extremely high bandwidth (e.g., handle video streams, traffic congestion, user profiles), in the most efficient way possible. Other use cases focus on commercial applications that make use of middleware applications to enhance their performance. The latter fall into two main areas: real-time virtual reality and live video streaming, which are extremely demanding in terms of latency and bandwidth to provide an acceptable QoE/QoS to multiple users. The use cases presented are built assuming that 5G is essential for their support with appropriate QoE/QoS. Key performance indicators and their range of variation are also identified.info:eu-repo/semantics/acceptedVersio

    Beyond 5G URLLC Evolution: New Service Modes and Practical Considerations

    Full text link
    Ultra-reliable low latency communications (URLLC) arose to serve industrial IoT (IIoT) use cases within the 5G. Currently, it has inherent limitations to support future services. Based on state-of-the-art research and practical deployment experience, in this article, we introduce and advocate for three variants: broadband, scalable and extreme URLLC. We discuss use cases and key performance indicators and identify technology enablers for the new service modes. We bring practical considerations from the IIoT testbed and provide an outlook toward some new research directions.Comment: Submitted to IEEE Wireless Commun. Ma

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Towards Enabling Critical mMTC: A Review of URLLC within mMTC

    Full text link
    corecore