481 research outputs found

    Pattern to process: methodological investigations into the formation and interpretation of spatial patterns in archaeological landscapes

    Get PDF
    My research has shown that the type of regional archaeological data analysis required by landscape archaeological approaches is an area where both theory and method are still in their infancy. High-level theories about the occurrence, scope, and effects of processes such as centralization, urbanization, and Hellenization/Romanization cannot yet be supported by middle range theory, which itself cannot be developed until the basic business of generating information of sufficient quality about the archaeological record has been tackled. Currently, archaeological data can be made to fit almost any interpretation generated, ultimately, on the basis of the ancient written sources. If we are to escape from this selfreinforcing cycle, research should perhaps no longer be focused on the classical themes generated by culture-historical approaches, but should seek its own proper field of operation. In the area of methods and methodology, I have demonstrated the pervasive influence of systematic research and visibility biases on the patterns that are present in the archaeological data generated over the past 50 years or so. There are mechanisms at work, both in the traditional archaeological interpretation of limited numbers of excavated sites and historical sources, and in the landscape archaeological approach, that cause the systematic undervaluation of unobtrusive remains. The significance of systematic biases in both the coarse site-based data sets resulting from desktop and ‘topographic’ studies and the more detailed site-based or ‘continuous’ data resulting from intensive field surveys has become much clearer as a result of the studies reported here. This should have practical consequences for the ways in which we study the existing archaeological record, plan future landscape archaeological research, and conduct field surveys. Site databases, the traditional starting point for regional archaeological studies, can no longer be taken at face value; rather, they require careful source criticism before being used to support specific arguments and hypotheses about settlement and land use dynamics. My studies have also shown that future data collection, whether through field survey, excavation or other methods, has to take place in a much more methodical manner if we are to produce data that are sufficiently standardized to be successfully exchanged, compared, and interpreted by others – guidelines for which should become embodied in an international standard defining ‘best practice in landscape archaeology’.

    The evaluation of Corona and Ikonos satellite imagery for archaeological applications in a semi-arid environment

    Get PDF
    Archaeologists have been aware of the potential of satellite imagery as a tool almost since the first Earth remote sensing satellite. Initially sensors such as Landsat had a ground resolution which was too coarse for thorough archaeological prospection although the imagery was used for geo-archaeological and enviro-archaeological analyses. In the intervening years the spatial and spectral resolution of these sensing devices has improved. In recent years two important occurrences enhanced the archaeological applicability of imagery from satellite platforms: The declassification of high resolution photography by the American and Russian governments and the deregulation of commercial remote sensing systems allowing the collection of sub metre resolution imagery. This thesis aims to evaluate the archaeological application of three potentially important resources; Corona space photography and Ikonos panchromatic and multispectral imager). These resources are evaluated in conjunction with Landsat Thematic Mapper (TM) imagery over a 600 square km study area in the semi-arid environment around Homs, Syria. The archaeological resource in this area is poorly understood, mapped and documented. The images are evaluated for their ability to create thematic layers and to locate archaeological residues in different environmental zones. Further consideration is given to the physical factors that allow archaeological residues to be identified and how satellite imagery and modern technology may impact on Cultural Resource Management. This research demonstrates that modern high resolution and historic satellite imagery can be important tools for archaeologists studying in semi-arid environments. The imagery has allowed a representative range of archaeological features and landscape themes to be identified. The research shows that the use of satellite imagery can have significant impact on the design of the archaeological survey in the middle-east and perhaps in other environments

    Monuments in search of a landscape: the landscape context of monumentality in Late Neolithic Malta.

    Get PDF
    From the mid-4th to the mid-3rd millennium BC, the Maltese archipelago was characterized by a dense concentration of monumental activity. Archaeological research has generally focussed on the monumental buildings themselves, paying less attention to the environment that surrounded these structures. The present thesis is aimed at addressing this lacuna. The history of approaches to Maltese prehistory is reviewed, and it is argued that the neglect of the landscape setting is related to the practice of archaeology in a colonial context. Chapter 3 considers the physical characteristics and dynamics of the island environment. The landscape context of megalithic buildings is analysed using a Geographical Information Systems (GIS) model of the archipelago. Chapter 4 uses a bivariate approach, while Chapter 5 uses multivariate techniques. A number of environmental variables that influence site location are identified, and a model for the choice of monument location is proposed. It is demonstrated that the location of megalithic monuments was closely determined by windows of opportunity in the natural landscape. The resulting insights into the decision-making processes of this period contribute to a better understanding of the priorities and values of the builders. It is argued that megalithic monuments played an important role in transforming natural divisions in the landscape into cultural units of organisation. The following chapters continue the analysis at a different scale, focussing on the buildings themselves. The organisation of architectural space and the deployment of images within these buildings are examined. It is argued that these spaces and images make ordered references to the island environment. This relationship may be better understood in the light of the landscape setting of the buildings. A fresh interpretative model for this evidence is proposed, where it is argued that these architectural forms may be better understood in terms of symbolic storage, movement and performance

    Impact of geogenic degassing on C-isotopic composition of dissolved carbon in karst systems of Greece

    Get PDF
    The Earth C-cycle is complex, where endogenic and exogenic sources are interconnected, operating in a multiple spatial and temporal scale (Lee et al., 2019). Non-volcanic CO2 degassing from active tectonic structures is one of the less defined components of this cycle (Frondini et al., 2019). Carbon mass-balance (Chiodini et al., 2000) is a useful tool to quantify the geogenic carbon output from regional karst hydrosystems. This approach has been demonstrated for central Italy and may be valid also for Greece, due to the similar geodynamic settings. Deep degassing in Greece has been ascertained mainly at hydrothermal and volcanic areas, but the impact of geogenic CO2 released by active tectonic areas has not yet been quantified. The main aim of this research is to investigate the possible deep degassing through the big karst aquifers of Greece. Since 2016, 156 karst springs were sampled along most of the Greek territory. To discriminate the sources of carbon, the analysis of the isotopic composition of carbon was carried out. δ13CTDIC values vary from -16.61 to -0.91‰ and can be subdivided into two groups characterized by (a) low δ13CTDIC, and (b) intermediate to high δ13CTDIC with a threshold value of -6.55‰. The composition of the first group can be related to the mixing of organic-derived CO2 and the dissolution of marine carbonates. Springs of the second group, mostly located close to Quaternary volcanic areas, are linked to possible carbon input from deep sources

    EVOLUTION OF THE SUBCONTINENTAL LITHOSPHERE DURING MESOZOIC TETHYAN RIFTING: CONSTRAINTS FROM THE EXTERNAL LIGURIAN MANTLE SECTION (NORTHERN APENNINE, ITALY)

    Get PDF
    Our study is focussed on mantle bodies from the External Ligurian ophiolites, within the Monte Gavi and Monte Sant'Agostino areas. Here, two distinct pyroxenite-bearing mantle sections were recognized, mainly based on their plagioclase-facies evolution. The Monte Gavi mantle section is nearly undeformed and records reactive melt infiltration under plagioclase-facies conditions. This process involved both peridotites (clinopyroxene-poor lherzolites) and enclosed spinel pyroxenite layers, and occurred at 0.7–0.8 GPa. In the Monte Gavi peridotites and pyroxenites, the spinel-facies clinopyroxene was replaced by Ca-rich plagioclase and new orthopyroxene, typically associated with secondary clinopyroxene. The reactive melt migration caused increase of TiO2 contents in relict clinopyroxene and spinel, with the latter also recording a Cr2O3 increase. In the Monte Gavi peridotites and pyroxenites, geothermometers based on slowly diffusing elements (REE and Y) record high temperature conditions (1200-1250 °C) related to the melt infiltration event, followed by subsolidus cooling until ca. 900°C. The Monte Sant'Agostino mantle section is characterized by widespread ductile shearing with no evidence of melt infiltration. The deformation recorded by the Monte Sant'Agostino peridotites (clinopyroxene-rich lherzolites) occurred at 750–800 °C and 0.3–0.6 GPa, leading to protomylonitic to ultramylonitic textures with extreme grain size reduction (10–50 μm). Compared to the peridotites, the enclosed pyroxenite layers gave higher temperature-pressure estimates for the plagioclase-facies re-equilibration (870–930 °C and 0.8–0.9 GPa). We propose that the earlier plagioclase crystallization in the pyroxenites enhanced strain localization and formation of mylonite shear zones in the entire mantle section. We subdivide the subcontinental mantle section from the External Ligurian ophiolites into three distinct domains, developed in response to the rifting evolution that ultimately formed a Middle Jurassic ocean-continent transition: (1) a spinel tectonite domain, characterized by subsolidus static formation of plagioclase, i.e. the Suvero mantle section (Hidas et al., 2020), (2) a plagioclase mylonite domain experiencing melt-absent deformation and (3) a nearly undeformed domain that underwent reactive melt infiltration under plagioclase-facies conditions, exemplified by the the Monte Sant'Agostino and the Monte Gavi mantle sections, respectively. We relate mantle domains (1) and (2) to a rifting-driven uplift in the late Triassic accommodated by large-scale shear zones consisting of anhydrous plagioclase mylonites. Hidas K., Borghini G., Tommasi A., Zanetti A. & Rampone E. 2021. Interplay between melt infiltration and deformation in the deep lithospheric mantle (External Liguride ophiolite, North Italy). Lithos 380-381, 105855

    Impact of Etna’s volcanic emission on major ions and trace elements composition of the atmospheric deposition

    Get PDF
    Mt. Etna, on the eastern coast of Sicily (Italy), is one of the most active volcanoes on the planet and it is widely recognized as a big source of volcanic gases (e.g., CO2 and SO2), halogens, and a lot of trace elements, to the atmosphere in the Mediterranean region. Especially during eruptive periods, Etna’s emissions can be dispersed over long distances and cover wide areas. A group of trace elements has been recently brought to attention for their possible environmental and human health impacts, the Technology-critical elements. The current knowledge about their geochemical cycles is still scarce, nevertheless, recent studies (Brugnone et al., 2020) evidenced a contribution from the volcanic activity for some of them (Te, Tl, and REE). In 2021, in the framework of the research project “Pianeta Dinamico”, by INGV, a network of 10 bulk collectors was implemented to collect, monthly, atmospheric deposition samples. Four of these collectors are located on the flanks of Mt. Etna, other two are in the urban area of Catania and three are in the industrial area of Priolo, all most of the time downwind of the main craters. The last one, close to Cesarò (Nebrodi Regional Park), represents the regional background. The research aims to produce a database on major ions and trace element compositions of the bulk deposition and here we report the values of the main physical-chemical parameters and the deposition fluxes of major ions and trace elements from the first year of research. The pH ranged from 3.1 to 7.7, with a mean value of 5.6, in samples from the Etna area, while it ranged between 5.2 and 7.6, with a mean value of 6.4, in samples from the other study areas. The EC showed values ranging from 5 to 1032 μS cm-1, with a mean value of 65 μS cm-1. The most abundant ions were Cl- and SO42- for anions, Na+ and Ca+ for cations, whose mean deposition fluxes, considering all sampling sites, were 16.6, 6.8, 8.4, and 6.0 mg m-2 d, respectively. The highest deposition fluxes of volcanic refractory elements, such as Al, Fe, and Ti, were measured in the Etna’s sites, with mean values of 948, 464, and 34.3 μg m-2 d-1, respectively, higher than those detected in the other sampling sites, further away from the volcanic source (26.2, 12.4, 0.5 μg m-2 d-1, respectively). The same trend was also observed for volatile elements of prevailing volcanic origin, such as Tl (0.49 μg m-2 d-1), Te (0.07 μg m-2 d-1), As (0.95 μg m-2 d-1), Se (1.92 μg m-2 d-1), and Cd (0.39 μg m-2 d-1). Our preliminary results show that, close to a volcanic area, volcanic emissions must be considered among the major contributors of ions and trace elements to the atmosphere. Their deposition may significantly impact the pedosphere, hydrosphere, and biosphere and directly or indirectly human health

    Earth resources: A continuing bibliography with indexes (issue 58)

    Get PDF
    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore