7,122 research outputs found

    A Multi-objective Exploratory Procedure for Regression Model Selection

    Full text link
    Variable selection is recognized as one of the most critical steps in statistical modeling. The problems encountered in engineering and social sciences are commonly characterized by over-abundance of explanatory variables, non-linearities and unknown interdependencies between the regressors. An added difficulty is that the analysts may have little or no prior knowledge on the relative importance of the variables. To provide a robust method for model selection, this paper introduces the Multi-objective Genetic Algorithm for Variable Selection (MOGA-VS) that provides the user with an optimal set of regression models for a given data-set. The algorithm considers the regression problem as a two objective task, and explores the Pareto-optimal (best subset) models by preferring those models over the other which have less number of regression coefficients and better goodness of fit. The model exploration can be performed based on in-sample or generalization error minimization. The model selection is proposed to be performed in two steps. First, we generate the frontier of Pareto-optimal regression models by eliminating the dominated models without any user intervention. Second, a decision making process is executed which allows the user to choose the most preferred model using visualisations and simple metrics. The method has been evaluated on a recently published real dataset on Communities and Crime within United States.Comment: in Journal of Computational and Graphical Statistics, Vol. 24, Iss. 1, 201

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Environmental analysis for application layer networks

    Get PDF
    Die zunehmende Vernetzung von Rechnern ĂŒber das Internet lies die Vision von Application Layer Netzwerken aufkommen. Sie umfassen Overlay Netzwerke wie beispielsweise Peer-to-Peer Netzwerke und Grid Infrastrukturen unter Verwendung des TCP/IP Protokolls. Ihre gemeinsame Eigenschaft ist die redundante, verteilte Bereitstellung und der Zugang zu Daten-, Rechen- und Anwendungsdiensten, wĂ€hrend sie die HeterogenitĂ€t der Infrastruktur vor dem Nutzer verbergen. In dieser Arbeit werden die Anforderungen, die diese Netzwerke an ökonomische Allokationsmechanismen stellen, untersucht. Die Analyse erfolgt anhand eines Marktanalyseprozesses fĂŒr einen zentralen Auktionsmechanismus und einen katallaktischen Markt. --Grid Computing

    Assessment of Multi-Criteria Preference Measurement Methods for a Dynamic Environment

    Get PDF
    Multi-criteria decision analysis is required in various domains where decision making reoccurs as part of a longer-term process. When the decision context changes or the preferences evolve due to process dynamics, one-shot preference measurement is not sufficient to build an adequate basis for decision making. Process dynamics require taking into account the dimension of time. We investigate six interactive preference measurement methods providing the possibility to assess alternatives in terms of utility for an individual decision maker, whether they are suitable for dynamic preference adjustment. We use a mixed-methods approach to analyse them towards 1) requirements for a dynamic method, and 2) their efficiency, validity, and complexity. Our results show that the best method to be further developed for dynamic context is Adaptive Self-Explication slightly preferable over Pre-Sorted Self-Explication. Our assessment implicates that an extension of the Adaptive Self-Explication will enable efficient dynamic decision support

    Predicting Airline Choices: A Decision Support Perspective and Alternative Approaches

    Get PDF
    The ability to predict the choices of prospective passengers allows airlines to alleviate the need for overbooking flights and subsequently bumping passengers, potentially leading to improved customer satisfaction. Past studies have typically focused on identifying the important factors that influence choice behaviors and applied discrete choice framework models to model passengers’ airline choices. Typical discrete choice models rely on two major assumptions: the existence of a utility function that represents the preferences over a choice set and the linearity of the utility function with respect to attributes of alternatives and decision makers. These assumptions allow the discrete choice models to be easily interpreted, as each unit change of an input attribute can be directly translated into change in utility that eventually affects the optimal choice. However, these restrictive assumptions might impede the ability of typical discrete choice models to deliver operational accurate prediction and forecasts. In this paper, we focus on developing operational models that are intended for supporting the actual prediction decisions of airlines. We propose two alternative approaches, pairwise preference learning using classification techniques and ranking function learning using evolutionary computation. We have empirically compared these approaches against the standard discrete choice framework models and report some promising results in this paper

    Improving Design Optimization and Optimization-based Design Knowledge Discovery

    Get PDF
    The use of design optimization in the early stages of architectural design process has attracted a high volume of research in recent years. However, traditional design optimization requires a significant amount of computing time, especially when there are multiple design objectives to achieve. What’s more, there is a lack of studies in the current research on automatic generation of architectural design knowledge from optimization results. This paper presents computational methods for creating and improving a closed loop of design optimization and knowledge discovery in architecture. It first introduces a design knowledge-assisted optimization improvement method with the techniques - offline simulation and Divide & Conquer (D&C) - to reduce the computing time and improve the efficiency of the design optimization process utilizing architectural domain knowledge. It then describes a new design knowledge discovery system where design knowledge can be discovered from optimization through an automatic data mining approach. The discovered knowledge has the potential to further help improve the efficiency of the optimization method, thus forming a closed loop of improving optimization and knowledge discovery. The validations of both methods are presented in the context of a case study with parametric form-finding for a nursing unit design with two design objectives: minimizing the nurses’ travel distance and maximizing daylighting performance in patient rooms

    A literature review on the application of evolutionary computing to credit scoring

    Get PDF
    The last years have seen the development of many credit scoring models for assessing the creditworthiness of loan applicants. Traditional credit scoring methodology has involved the use of statistical and mathematical programming techniques such as discriminant analysis, linear and logistic regression, linear and quadratic programming, or decision trees. However, the importance of credit grant decisions for financial institutions has caused growing interest in using a variety of computational intelligence techniques. This paper concentrates on evolutionary computing, which is viewed as one of the most promising paradigms of computational intelligence. Taking into account the synergistic relationship between the communities of Economics and Computer Science, the aim of this paper is to summarize the most recent developments in the application of evolutionary algorithms to credit scoring by means of a thorough review of scientific articles published during the period 2000–2012.This work has partially been supported by the Spanish Ministry of Education and Science under grant TIN2009-14205 and the Generalitat Valenciana under grant PROMETEO/2010/028
    • 

    corecore