1,559 research outputs found

    Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    Get PDF
    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting

    Navigation control of an automated mobile robot robot using neural network technique

    Get PDF
    Over recent years, automated mobile robots play a crucial role in various navigation operations. For any mobile device, the capacity to explore in its surroundings is essential. Evading hazardous circumstances, for example, crashes and risky conditions (temperature, radiation, presentation to climate, and so on.) comes in the first place, yet in the event that the robot has a reason that identifies with particular places in its surroundings, it must discover those spots. There is an increment in examination here due to the requisition of mobile robots in a solving issues like investigating natural landscape and assets, transportation tasks, surveillance, or cleaning. We require great moving competencies and a well exactness for moving in a specified track in these requisitions. Notwithstanding, control of these navigation bots get to be exceptionally troublesome because of the exceedingly unsystematic and dynamic aspects of the surrounding world. The intelligent reply to this issue is the provision of sensors to study the earth. As neural networks (NNs) are described by adaptability and a fitness for managing non-linear problems, they are conceived to be useful when utilized on navigation robots. In this exploration our computerized reasoning framework is focused around neural network model for control of an Automated motion robot in eccentric and unsystematic nature. Hence the back propagation algorithm has been utilized for controlling the direction of the mobile robot when it experiences by an obstacle in the left, right and front directions. The recreation of the robot under different deterrent conditions is carried out utilizing Arduino which utilizes C programs for usage
    corecore