3,569 research outputs found

    LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances

    Full text link
    Predicting the completion time of business process instances would be a very helpful aid when managing processes under service level agreement constraints. The ability to know in advance the trend of running process instances would allow business managers to react in time, in order to prevent delays or undesirable situations. However, making such accurate forecasts is not easy: many factors may influence the required time to complete a process instance. In this paper, we propose an approach based on deep Recurrent Neural Networks (specifically LSTMs) that is able to exploit arbitrary information associated to single events, in order to produce an as-accurate-as-possible prediction of the completion time of running instances. Experiments on real-world datasets confirm the quality of our proposal.Comment: Article accepted for publication in 2017 IEEE Symposium on Deep Learning (IEEE DL'17) @ SSC

    Efficient computation of updated lower expectations for imprecise continuous-time hidden Markov chains

    Get PDF
    We consider the problem of performing inference with imprecise continuous-time hidden Markov chains, that is, imprecise continuous-time Markov chains that are augmented with random output variables whose distribution depends on the hidden state of the chain. The prefix `imprecise' refers to the fact that we do not consider a classical continuous-time Markov chain, but replace it with a robust extension that allows us to represent various types of model uncertainty, using the theory of imprecise probabilities. The inference problem amounts to computing lower expectations of functions on the state-space of the chain, given observations of the output variables. We develop and investigate this problem with very few assumptions on the output variables; in particular, they can be chosen to be either discrete or continuous random variables. Our main result is a polynomial runtime algorithm to compute the lower expectation of functions on the state-space at any given time-point, given a collection of observations of the output variables

    Interpretable Categorization of Heterogeneous Time Series Data

    Get PDF
    Understanding heterogeneous multivariate time series data is important in many applications ranging from smart homes to aviation. Learning models of heterogeneous multivariate time series that are also human-interpretable is challenging and not adequately addressed by the existing literature. We propose grammar-based decision trees (GBDTs) and an algorithm for learning them. GBDTs extend decision trees with a grammar framework. Logical expressions derived from a context-free grammar are used for branching in place of simple thresholds on attributes. The added expressivity enables support for a wide range of data types while retaining the interpretability of decision trees. In particular, when a grammar based on temporal logic is used, we show that GBDTs can be used for the interpretable classi cation of high-dimensional and heterogeneous time series data. Furthermore, we show how GBDTs can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply GBDTs to analyze the classic Australian Sign Language dataset as well as data on near mid-air collisions (NMACs). The NMAC data comes from aircraft simulations used in the development of the next-generation Airborne Collision Avoidance System (ACAS X).Comment: 9 pages, 5 figures, 2 tables, SIAM International Conference on Data Mining (SDM) 201
    • …
    corecore