5,535 research outputs found

    AMaĻ‡oSā€”Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaĻ‡oS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaĻ‡oS and discusses how its current architecture realizes these principles

    SCREEN: Learning a Flat Syntactic and Semantic Spoken Language Analysis Using Artificial Neural Networks

    Get PDF
    In this paper, we describe a so-called screening approach for learning robust processing of spontaneously spoken language. A screening approach is a flat analysis which uses shallow sequences of category representations for analyzing an utterance at various syntactic, semantic and dialog levels. Rather than using a deeply structured symbolic analysis, we use a flat connectionist analysis. This screening approach aims at supporting speech and language processing by using (1) data-driven learning and (2) robustness of connectionist networks. In order to test this approach, we have developed the SCREEN system which is based on this new robust, learned and flat analysis. In this paper, we focus on a detailed description of SCREEN's architecture, the flat syntactic and semantic analysis, the interaction with a speech recognizer, and a detailed evaluation analysis of the robustness under the influence of noisy or incomplete input. The main result of this paper is that flat representations allow more robust processing of spontaneous spoken language than deeply structured representations. In particular, we show how the fault-tolerance and learning capability of connectionist networks can support a flat analysis for providing more robust spoken-language processing within an overall hybrid symbolic/connectionist framework.Comment: 51 pages, Postscript. To be published in Journal of Artificial Intelligence Research 6(1), 199

    Increase Apparent Public Speaking Fluency By Speech Augmentation

    Full text link
    Fluent and confident speech is desirable to every speaker. But professional speech delivering requires a great deal of experience and practice. In this paper, we propose a speech stream manipulation system which can help non-professional speakers to produce fluent, professional-like speech content, in turn contributing towards better listener engagement and comprehension. We propose to achieve this task by manipulating the disfluencies in human speech, like the sounds 'uh' and 'um', the filler words and awkward long silences. Given any unrehearsed speech we segment and silence the filled pauses and doctor the duration of imposed silence as well as other long pauses ('disfluent') by a predictive model learned using professional speech dataset. Finally, we output a audio stream in which speaker sounds more fluent, confident and practiced compared to the original speech he/she recorded. According to our quantitative evaluation, we significantly increase the fluency of speech by reducing rate of pauses and fillers

    Disambiguation of Super Parts of Speech (or Supertags): Almost Parsing

    Get PDF
    In a lexicalized grammar formalism such as Lexicalized Tree-Adjoining Grammar (LTAG), each lexical item is associated with at least one elementary structure (supertag) that localizes syntactic and semantic dependencies. Thus a parser for a lexicalized grammar must search a large set of supertags to choose the right ones to combine for the parse of the sentence. We present techniques for disambiguating supertags using local information such as lexical preference and local lexical dependencies. The similarity between LTAG and Dependency grammars is exploited in the dependency model of supertag disambiguation. The performance results for various models of supertag disambiguation such as unigram, trigram and dependency-based models are presented.Comment: ps file. 8 page
    • ā€¦
    corecore