5,363 research outputs found

    On environments as systemic exoskeletons: Crosscutting optimizers and antifragility enablers

    Full text link
    Classic approaches to General Systems Theory often adopt an individual perspective and a limited number of systemic classes. As a result, those classes include a wide number and variety of systems that result equivalent to each other. This paper introduces a different approach: First, systems belonging to a same class are further differentiated according to five major general characteristics. This introduces a "horizontal dimension" to system classification. A second component of our approach considers systems as nested compositional hierarchies of other sub-systems. The resulting "vertical dimension" further specializes the systemic classes and makes it easier to assess similarities and differences regarding properties such as resilience, performance, and quality-of-experience. Our approach is exemplified by considering a telemonitoring system designed in the framework of Flemish project "Little Sister". We show how our approach makes it possible to design intelligent environments able to closely follow a system's horizontal and vertical organization and to artificially augment its features by serving as crosscutting optimizers and as enablers of antifragile behaviors.Comment: Accepted for publication in the Journal of Reliable Intelligent Environments. Extends conference papers [10,12,15]. The final publication is available at Springer via http://dx.doi.org/10.1007/s40860-015-0006-

    Context Verification and Adaptation in Web Service Composition

    Get PDF
    Automatic web-service composition aims at automating the design of an appropriate combination of existing web services to achieve a global goal. Most proposed AWSC approaches only consider input/output parameters and quality features of services. However, most real-world web services have applicable conditions and require constraints to be considered according to the execution context of composite services. Constraint verification has a significant impact on the composition and execution of composite services. In particular, runtime verification of service constraints can result in the failure of the execution of composite services and eventually waste computational resources and may incur monetary costs. In addition, traditional adaptation approaches for web service composition consider recovery in case of failure when a service becomes unavailable. They do not take into account changes and limitations in service execution environment which potentially can affect the execution of a wide range of services. Externally-defined constraints are likely to be defined and become or cease to be applicable after the composite service has been deployed. In this thesis, we propose a novel approach to model and verify different types of constraints inside composite services. We not only consider input/output parameters but also the values that can be assigned to parameters during design and execution of composite services. In addition, we provide novel failure recovery and adaptation approaches for different types of constraints according to the execution context of composite services. In our solution, we develop a new structure including alternative composite services to recover broken composite services and adapt to external constraints. We finally propose a brokerage architecture including all proposed approaches for constraint-aware service composition and adaptation

    Digital Twins:An enabler for digital transformation

    Get PDF

    Digital Twins:An enabler for digital transformation

    Get PDF
    Digital Twins are a virtual representation of anything of value for an organization that create a link between the real and virtual worlds by a continuous bidirectional data/information exchange. In this chapter we present the origins of the concept and how it evolved with the advent of new technological trends. In addition, we describe the main characteristics of a Digital Twin, the benefits of its use, and real-world examples of the usage of digital twins’. Finally, the challenges for its adoption, and the elements to be considered for managing the quality of the Digital Twin are presented to give a complete overview of this new technology.Full book available: https://www.rug.nl/gdbc/the-gdbc-book

    Execution/Simulation of Context/Constraint-aware Composite Services using GIPSY

    Get PDF
    For fulfilling a complex requirement comprising of several sub-tasks, a composition of simple web services, each of which is dedicated to performing a specific sub-task involved, proves to be a more competent solution in comparison to an equivalent atomic web service. Owing to advantages such as re-usability of components, broader options for composition requesters and liberty to specialize for component providers, for over two decades now, composite services have been extensively researched to the point of being perfected in many aspects. Yet, most of the studies undertaken in this field fail to acknowledge that every web service has a limited context in which it can successfully perform its tasks, the boundaries of which are defined by the internal constraints placed on the service by its providers. When used as part of a composition, the restricted context-spaces of all such component services together define the contextual boundaries of the composite service as a unit, which makes internal constraints an influential factor for composite service functionality. However, due to the limited exposure received by them, no systems have yet been proposed to cater to the specific verification of internal constraints imposed on components of a composite service. In an attempt to address this gap in service composition research, in this thesis, we propose a multi-faceted solution capable of not only automatically constructing context-aware composite web services with their internal constraints positioned for optimum resource-utilization but also of validating the generated compositions using the General Intensional Programming SYstem (GIPSY) as a time- and cost-efficient simulation/execution environment

    Context-Aware and Secure Workflow Systems

    Get PDF
    Businesses do evolve. Their evolution necessitates the re-engineering of their existing "business processes”, with the objectives of reducing costs, delivering services on time, and enhancing their profitability in a competitive market. This is generally true and particularly in domains such as manufacturing, pharmaceuticals and education). The central objective of workflow technologies is to separate business policies (which normally are encoded in business logics) from the underlying business applications. Such a separation is desirable as it improves the evolution of business processes and, more often than not, facilitates the re-engineering at the organisation level without the need to detail knowledge or analyses of the application themselves. Workflow systems are currently used by many organisations with a wide range of interests and specialisations in many domains. These include, but not limited to, office automation, finance and banking sector, health-care, art, telecommunications, manufacturing and education. We take the view that a workflow is a set of "activities”, each performs a piece of functionality within a given "context” and may be constrained by some security requirements. These activities are coordinated to collectively achieve a required business objective. The specification of such coordination is presented as a set of "execution constraints” which include parallelisation (concurrency/distribution), serialisation, restriction, alternation, compensation and so on. Activities within workflows could be carried out by humans, various software based application programs, or processing entities according to the organisational rules, such as meeting deadlines or performance improvement. Workflow execution can involve a large number of different participants, services and devices which may cross the boundaries of various organisations and accessing variety of data. This raises the importance of _ context variations and context-awareness and _ security (e.g. access control and privacy). The specification of precise rules, which prevent unauthorised participants from executing sensitive tasks and also to prevent tasks from accessing unauthorised services or (commercially) sensitive information, are crucially important. For example, medical scenarios will require that: _ only authorised doctors are permitted to perform certain tasks, _ a patient medical records are not allowed to be accessed by anyone without the patient consent and _ that only specific machines are used to perform given tasks at a given time. If a workflow execution cannot guarantee these requirements, then the flow will be rejected. Furthermore, features/characteristics of security requirement are both temporal- and/or event-related. However, most of the existing models are of a static nature – for example, it is hard, if not impossible, to express security requirements which are: _ time-dependent (e.g. A customer is allowed to be overdrawn by 100 pounds only up-to the first week of every month. _ event-dependent (e.g. A bank account can only be manipulated by its owner unless there is a change in the law or after six months of his/her death). Currently, there is no commonly accepted model for secure and context-aware workflows or even a common agreement on which features a workflow security model should support. We have developed a novel approach to design, analyse and validate workflows. The approach has the following components: = A modelling/design language (known as CS-Flow). The language has the following features: – support concurrency; – context and context awareness are first-class citizens; – supports mobility as activities can move from one context to another; – has the ability to express timing constrains: delay, deadlines, priority and schedulability; – allows the expressibility of security policies (e.g. access control and privacy) without the need for extra linguistic complexities; and – enjoy sound formal semantics that allows us to animate designs and compare various designs. = An approach known as communication-closed layer is developed, that allows us to serialise a highly distributed workflow to produce a semantically equivalent quasi-sequential flow which is easier to understand and analyse. Such re-structuring, gives us a mechanism to design fault-tolerant workflows as layers are atomic activities and various existing forward and backward error recovery techniques can be deployed. = Provide a reduction semantics to CS-Flow that allows us to build a tool support to animate a specifications and designs. This has been evaluated on a Health care scenario, namely the Context Aware Ward (CAW) system. Health care provides huge amounts of business workflows, which will benefit from workflow adaptation and support through pervasive computing systems. The evaluation takes two complementary strands: – provide CS-Flow’s models and specifications and – formal verification of time-critical component of a workflow
    • …
    corecore