409 research outputs found

    Vision-Based Control of Flexible Robot Systems

    Get PDF
    This thesis covers the controlling of flexible robot systems by using a camera as a measurement device. To accomplish the purpose of the study, the estimation process of dynamic state variables of flexible link robot has been examined based on camera measurements. For the purpose of testing two application examples for flexible link have been applied, an algorithm for the dynamic state variables estimation is proposed. Flexible robots can have very complex dynamic behavior during their operations, which can lead to induced vibrations. Since the vibrations and its derivative are not all measurable, therefore the estimation of state variables plays a significant role in the state feedback control of flexible link robots. A vision sensor (i.e. camera) realizing a contact-less measurement sensor can be used to measure the deflection of flexible robot arm. Using a vision sensor, however, would generate new effects such as limited accuracy and time delay, which are the main inherent problems of the application of vision sensors within the context. These effects and related compensation approaches are studied in this thesis. An indirect method for link deflection (i.e. system states) sensing is presented. It uses a vision system consisting of a CCD camera and an image processing unit. The main purpose of this thesis is to develop an estimation approach combining suitable measurement devices which are easy to realize with improved reliability. It includes designing two state estimators; the first one for the traditional sensor type (negligible noise and time delay) and the second one is for the camera measurement which account for the dynamic error due to the time delay. The estimation approach is applied first using a single link flexible robot; the dynamic model of the flexible link is derived using a finite element method. Based on the suggested estimation approach, the first observer estimates the vibrations using strain gauge (fast and complete dynamics), and the second observer estimates the vibrations using vision data (slow dynamical parts). In order to achieve an optimal estimation, a proper combination process of the two estimated dynamical parts of the system dynamics is described. The simulation results for the estimations based on vision measurements show that the slow dynamical states can be estimated and the observer can compensate the time delay dynamic errors. It is also observed that an optimal estimation can be attained by combining slow dynamical estimated states with those of fast observer-based on strain gauge measurement. Based on suggested estimation approach a vision-based control for elastic shipmounted crane is designed to regulate the motion of the payload. For the observers and the controller design, a linear dynamic model of elastic-ship mounted crane incorporating a finite element technique for modeling flexible link is employed. In order to estimate the dynamic states variables and the unknown disturbance two state observers are designed. The first one estimates the state variables using camera measurement (augmented Kalman filter). The second one used potentiometers measurement (PI-Observer). To realize a multi-model approach of elastic-ship mounted crane, a variable gain controller and variable gain observers are designed. The variable gain controller is used to generate the required damping to control the system based on the estimated states and the roll angle. Simulation results show that the variable gain observers can adequately estimate the states and the unknown disturbance acting on the payload. It is further observed that the variable gain controller can effectively reduce the payload pendulations. Experiments are conducted using the camera to measure the link deflection of scaled elastic ship-mounted crane system. The results shown that the variable gain controller based on the combined states observers mitigated the vibrations of the system and the swinging of the payload. The presented material above is embedded into an interrelated thesis. A concise introduction to the vision-based control and state estimation problems is attached in the first chapter. An extensive survey of available visual servoing algorithms that include the rigid robot system and the flexible robot system is also presented. The conclusions of the work and suggestions for the future research are provided at the last chapter of this thesis

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR
    • …
    corecore