6,380 research outputs found

    Model-Based Predictive Rotor Current Control Strategy for Indirect Power Control of a DFIM Driven by an Indirect Matrix Converter

    Get PDF
    This paper presents a new control strategy using model-based predictive current control (MB-PCC) for a doubly fed induction machine (DFIM) driven by an indirect matrix converter (IMC). This strategy proposes the control of rotor currents, whose references are calculated from active and reactive stator power set points and the dynamic model of the DFIM. The control strategy works well in the four P-Q operating regions of the DFIM. The grid synchronization process is carried out by setting the P-Q power set points to zero. The results presented include the DFIM synchronization procedure as well as the active and reactive power control at variable shaft speed to validate the feasibility of the proposed strategy

    Indirect model predictive current control techniques for a direct matrix converter

    Get PDF
    The direct matrix converter has twenty-seven available switching states which implies that the implementation of predictive control techniques in this converter requires high computational cost while an adequate selection of weighting factors in order to control both input and output sides of the converter. In this paper, two indirect model predictive current control strategies are proposed in order to simplify the computational cost while avoiding the use of weighting factors. Both methods are based on the fictitious dc-link concept, which has been used in the past for the classical modulation and control techniques of the direct matrix converter. Simulated results confirm the feasibility of the proposed techniques demonstrating that they are an alternative to classical predictive control strategies for the direct matrix converter

    Indirect predictive control techniques for a matrix converter operating at fixed switching frequency

    Get PDF
    The following paper presents a novel indirect model predictive control strategy for a direct matrix converter (DMC). The direct matrix converter has a large number of available switching states and therefore the implementation of predictive control techniques require high computational resources. In addition, the simultaneous selection of weighting factors for the control of input and output variables of the converter complicates the system tuning. In this paper, two indirect model predictive control strategies are proposed in order to reduce the computational cost and by doing so avoid the use of weighting factors. The proposal is enhanced with a fixed switching frequency strategy in order to improve the performance of the full system. Results confirm the feasibility of the proposal by demonstrating that it is an alternative to classical predictive control strategies for the direct matrix converter.CONACYT – Consejo Nacional de Ciencia y Tecnologí

    Indirect predictive control strategy with mitigation of input filter resonances for a direct matrix converter

    Get PDF
    In this paper an indirect model predictive current control strategy is proposed. The proposed method simplifies the computational cost while avoiding the use of weighting factors. Weighting factors are an issue for model predictive control in a direct matrix converter due to the large number of available switching states and necessity to control both input and output sides of the converter

    A simple current control strategy for a four-leg indirect matrix converter

    Get PDF
    In this paper the experimental validation of a predictive current control strategy for a four-leg indirect matrix converter is presented. The four-leg indirect matrix converter can supply energy to an unbalanced three-phase load whilst providing a path for the zero sequence load. The predictive current control technique is based on the optimal selection among the valid switching states of the converter by evaluating a cost function, resulting in a simple approach without the necessity for modulators. Furthermore, zero dc-link current commutation is achieved by synchronizing the state changes in the input stage with the application of a zero voltage space vector in the inverter stage. Simulation results are presented and the strategy is experimentally validated using a laboratory prototype

    Indirect predictive control strategy with fixed switching frequency for a direct matrix converter

    Get PDF
    The direct matrix converter has a large number of available switching states which implies that the implementation of predictive control techniques in this converter requires high computational cost while an adequate selection of weighting factors in order to control both input and output sides. In this paper, an indirect model predictive current control strategy is proposed in order to simplify the computational cost while avoiding the use of weighting factors. The method is based on the fictitious dc-link concept, which has been used in the past for the classical modulation and control techniques of the direct matrix converter. The proposal is enhanced with a fixed switching predictive strategy in order to improve the performance of the full system. Simulated results confirm the feasibility of the proposal demonstrating that it is an alternative to classical predictive control strategies for the direct matrix converter

    Indirect model predictive control strategy with active damping implementation for a direct matrix converter operating at fixed switching frequency

    Get PDF
    One of the main drawbacks of the implementation of predictive control in a direct matrix converter is the high com¬putational cost and the adequate selection of weighting factors in order to control both input and output sides. In this paper is proposed an indirect model predictive current control strategy enhanced with a fixed switching predictive strategy and an active damping implementation. With all this, the idea is to reduce the computational cost while eliminating the necessity of weighting factors and improving the performance of the full system. The proposed method is based on the fictitious dc-link concept, which has been used in the past for the classical modulation and control techniques of the direct matrix converter. Simulated results confirm the feasibility of the proposal demonstrating that it is an alternative method to classical predictive control strategies for the direct matrix converter

    Indirect model predictive control strategies with input filter resonance mitigation for a matrix converter operating at fixed switching frequency

    Get PDF
    The main issues of the implementation of model predictive control in a direct matrix converter are the high com¬putational cost, the adequate selection of weighting factors and the variable switching frequency which could produce resonances in the input filter. In order to solve these problems, in this paper are proposed two indirect model predictive control techniques with input filter resonance mitigation operating at fixed switching frequency. The method is based on the fictitious dc-link concept, which has been used in the past for the classical modulation and control techniques of the direct matrix converter. Simulated results confirm the feasibility of the proposal demonstrating that it is an alternative to classical predictive control strategies for the direct matrix converter

    Predictive current control with instantaneous reactive power minimization for a four-leg indirect matrix converter

    Get PDF
    This paper presents the experimental valida¬tion of a predictive current control strategy with minimiza¬tion of the instantaneous reactive input power for a Four-Leg Indirect Matrix Converter (4Leg-IMC). The topology includes an input matrix converter stage, which provides the dc voltage for a four-leg voltage source converter (VSC) output stage. The VSC’s fourth leg provides a path for the zero sequence load current. The control technique is based on a finite control set model predictive control (FCS-MPC) strategy, whereby the switching states for the input and out¬put converters are selected by evaluating a predictive cost function. This results in a simpler approach than that seen in other well-known modulation methods, such as three-dimensional space vector modulation (3D-SVM). Positive dc voltage, (a requirement for the safe operation of the IMC) and minimization of the instantaneous input reactive power are obtained, while maintaining good tracking of the load reference currents. Furthermore, soft switching is achieved by synchronizing the state changes in the input stage with the application of zero voltage space vectors in the inverter stage. The control strategy is experimentally verified using a laboratory prototype

    Modulated predictive control for indirect matrix converter

    Get PDF
    Finite State Model Predictive Control (MPC) has been recently applied to several converter topologies as it can provide many advantages over other MPC techniques. The advantages of MPC include fast dynamics, multi-target control capability and relatively easy implementation on digital control platforms. However, its inherent variable switching frequency and lower steady state waveform quality, with respect to standard control which includes an appropriate modulation technique, represent a limitation to its applicability. Modulated Model Predictive Control (M2PC) combines all the advantages of MPC with the fixed switching frequency characteristic of PWM algorithms. The work presented in this paper focuses on the Indirect Matrix Converter (IMC), where the tight coupling between rectifier stage and inverter stage has to be taken into account in the M2PC design. This paper proposes an M2PC solution, suitable for IMC, with a switching pattern which emulates the desired waveform quality features of Space Vector Modulation (SVM) for matrix converters. The switching sequences of the rectifier stage and inverter stage are rearranged in order to always achieve zero-current switching on the rectifier stage, thus simplifying the current commutation strategy
    corecore