3,067 research outputs found

    Dynamical Analysis and Robust Control Synthesis for Water Treatment Processes

    Get PDF
    Nowadays, water demand and water scarcity are very urgent issues due to population growth, drought and poor water quality all over the world. Therefore, water treatment plants are playing a vital role for good living condition of human. Water area needs more concentration study to increase water productivity and decrease water cost. This dissertation presents the analysis and control of water treatment plants using robust control techniques. The applied control algorithms include Hโˆž, gain scheduled and observer-based loop-shaping control technique. They are modern control algorithms and very powerful in robust controlling of systems with uncertainties and disturbances. The water treatment plants include a desalination system and a wastewater process. Since fresh water scarcity is getting more serious, the desalination plants are to produce drinking water and wastewater treatment plants give the reusable water. The desalination system is a RO one used to produce drinking water from seawater and brackish water. The nonlinear behaviors of this system is carefully analyzed before the linearization. Due to the uncertainty caused by concentration polarization, the system is linearized using linear state-space parametric uncertainty framework. The system also suffer from many disturbances which water hammer is one of the most influential one. The mixed robust Hโˆž and ฮผ-synthesis control algorithm is applied to control the RO system coping with large uncertainties, disturbances and noises. The wastewater treatment process is an activated sludge process. This biological process use microorganisms to convert organic and certain inorganic matter from wastewater into cell mass. The process is very complex with many coupled biological and chemical reactions. Due to the large variation in the influent flow, the system is modelized and linearized as a linear parametric varying system using affine parameter-dependent representation. Since the influent flow is quickly variable and easily to be measured, the robust gain scheduled robust controller is applied to deal with the large uncertainty caused by the scheduled parameter. This control algorithm often gives better performances than those of general robust Hโˆž one. In the wastewater treatment plant, there exist an anaerobic digestion, which is controlled by the observer-based loop-shaping algorithm. The simulations show that all the controllers can effectively deal with large uncertainties, disturbances and noises in water treatment plants. They help improve the system performances and safeties, save energy and reduce product water costs. The studies contribute some potential control approaches for water treatment plants, which is currently a very active research area in the world.Contents ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท iv List of Tables ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท viii List of Figures ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท ix Chapter 1. Introduction ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 1 1.1 Reverse osmosis process ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 2 1.2 Activated sludge process ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 6 1.3 Robust Hโˆž and gain scheduling control ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 10 Chapter 2. Robust Hโˆž controller ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 13 2.1 Introduction ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 13 2.2 Uncertainty modelling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 13 2.2.1 Unstructured uncertainties ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 14 2.2.2 Parametric uncertainties ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 15 2.2.3 Structured uncertainties ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 16 2.2.4 Linear fractional transformation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 16 2.3 Stability criterion ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 17 2.3.1 Small gain theorem ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 17 2.3.2 Structured singular value (muy) synthesis brief definition ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 19 2.4 Robustness analysis and controller design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 20 2.4.1 Forming generalised plant and N-delta structure ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 20 2.4.2 Robustness analysis ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 24 2.5 Reduced controller ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 26 2.5.1 Truncation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 27 2.5.2 Residualization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 29 2.5.3 Balanced realizationยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 29 2.5.4 Optimal Hankel norm approximation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 31 Chapter 3. Robust gain scheduling controller ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 37 3.1 Introduction ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 37 3.2 Linear parameter varying (LPV) system ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 39 3.3 Matrix Polytope ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 40 3.4 Polytope and affine parameter-dependent representation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 41 3.4.1 Polytope representation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 41 3.4.2 Affine parameter-dependent representation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 42 3.5 Quadratic stability of LPV systems and quadratic (robust) Hโˆž performance ยทยทยทยทยทยทยทยทยท 43 3.6 Robust gain scheduling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 44 3.6.1 LPV system linearization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 44 3.6.2 Polytope-based gain scheduling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 45 3.6.3 LFT-based gain scheduling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 48 Chapter 4. Mixed robust Hโˆž and ฮผ-synthesis controller applied for a reverse osmosis desalination system ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 52 4.1 RO principles ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 52 4.1.1 Osmosis and reverse osmosis ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 52 4.1.2 Dead-end filtration and cross-flow filtration ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 53 4.2 Membranes ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 54 4.2.1 Structure and material ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 54 4.2.2 Hollow fine fiber membrane module ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 55 4.2.3 Spiral wound membrane module ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 57 4.3 Nonlinear RO modelling and analysis ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 58 4.3.1 RO system introduction ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 58 4.3.2 Modelling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 60 4.3.3 Nonlinear analysis ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 62 4.3.4 Concentration polarization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 64 4.4 Water hammer phenomenon ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 66 4.4.1 Water hammer, column separation and vaporous cavitation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 66 4.4.2 Water hammer analysis and simulation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 69 4.4.3 Prevention of water hammer effectยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 78 4.5 RO linearization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 79 4.5.1 Nominal linearization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 79 4.5.2 Uncertainty modeling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 81 4.5.3 Parametric uncertainty linearization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 83 4.6 Robust Hโˆž controller design for RO system ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 85 4.6.1 Control of uncertain RO system ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 85 4.6.2 Robustness analysis and Hโˆž controller design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 86 4.7 Simulation result and discussionยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 90 4.8 Conclusion ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 95 Chapter 5. Robust gain scheduling control of activated sludge process ยทยทยทยทยทยทยท 96 5.1 Introduction about activated sludge process ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 96 5.1.1 State variables ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 98 5.1.2 ASM1 processes ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 100 5.1.3 The control problem of activated sludge process ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 102 5.2 System modelling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 104 5.3 Model linearization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 107 5.4 Robust gain-schedule controller design for activated sludge process ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 109 5.5 Simulation result and discussionยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 115 5.6 Conclusion ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 120 Chapter 6. Observer-based loop-shaping control of anaerobic digestion ยทยทยทยท 121 6.1 Introduction ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 121 6.1.1 Control problem in anaerobic digestion ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 122 6.2 System modelling ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 123 6.3 Controller design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 124 6.3.1 Hโˆž loop-shaping controller ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 125 6.3.2 Coprime factor uncertainty ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 126 6.3.3 Control synthesis ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 127 6.4 Simulation result ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 131 6.5 Conclusion ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 133 Chapter 7. Conclusion ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 134 References ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 136 Appendices ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 144Docto

    State-space approach to nonlinear predictive generalized minimum variance control

    Get PDF
    A Nonlinear Predictive Generalized Minimum Variance (NPGMV) control algorithm is introduced for the control of nonlinear discrete-time multivariable systems. The plant model is represented by the combination of a very general nonlinear operator and also a linear subsystem which can be open-loop unstable and is represented in state-space model form. The multi-step predictive control cost index to be minimised involves both weighted error and control signal costing terms. The solution for the control law is derived in the time-domain using a general operator representation of the process. The controller includes an internal model of the nonlinear process but because of the assumed structure of the system the state observer is only required to be linear. In the asymptotic case, where the plant is linear, the controller reduces to a state-space version of the well known GPC controller

    Model Predictive Control Strategies Performance Evaluation over a Pipeline Transportation System

    Get PDF
    In several industries using pipelines to transport different products from one point to another is a common and indispensable process, especially at oil/hydrocarbon industries. Thus, optimizing the way this process is carried out must be an issue that cannot be stopped. Therefore, the performance of the control strategy implemented is one way of reaching such optimal operating zones. This study proposes using Model Predictive Control strategies for solving some issues related to the proper operation of pipelines. It is proposed a model based on physics and thermodynamic laws, using MATLABยฎ as the development environment. This model involves four pumping stations separated by three pipeline sections. Three MPC strategies are developed and implemented. Accordingly, the results indicate that a centralized controller with an antiwindup back-calculation method has the best results among the three configurations used

    Identification of Water Hammering for Centrifugal Pump Drive Systems

    Get PDF
    Water hammering is a significant problem in pumping systems. It damages the pipelines of the pump drastically and needs to identify with an intelligent method. Various conventional methods such as the method of characteristics and wave attenuation methods are available to identify water hammering problems, and the predictive control method is one of the finest and time-saving methods that can identify the anomalies in the system at an early stage such that the device can be saved from total damage and reduce energy loss. In this research, a machine learning (ML) algorithm has used for a predictive control method for the identification of water hammering problems in a pumping system with the help of simulations and experimental-based works. A linear regression algorithm has been used in this work to predict water hammering problems. The efficiency of the algorithm is almost 90% compared to other ML algorithms. Through a Vib Sensor app-based device at different pressures and flow rates, the velocity of the pumping system, a fluctuation between healthy and faulty conditions, and acceleration value at different times have been collected for experimental analysis. A fault created to analyze a water hammering problem in a pumping system by the sudden closing and opening of the valve. When the valve suddenly closed, the kinetic energy in the system changed to elastic resilience, which created a series of positive and negative wave vibrations in the pipe. The present work concentrates on the water hammering problem of centrifugal pumping AC drive systems. The problem is mainly a pressure surge that occurs in the fluid, due to sudden or forced stops of valves or changes in the direction and momentum of the fluid. Various experimental results based on ML tool and fast Fourier transformation (FFT) analysis are obtained with a Vib Sensor testbed set-up to prove that linear regression analysis is the less time-consuming algorithm for fault detection, irrespective of data size

    Contributions ร  la commande prรฉdictive des systรจmes de lois de conservation

    Get PDF
    La Commande prรฉdictive ou Commande Optimale ร  Horizon Glissant (COHG) devient de plus en plus populaire dans de nombreuses applications pratiques en raison de ses avantages importants tels que la stabilisation et la prise en compte des contraintes. Elle a รฉtรฉ bien รฉtudiรฉe pour des systรจmes en dimension finie mรชme dans le cas non linรฉaire. Cependant, son extension aux systรจmes en dimension infinie n'a pas retenu beaucoup d'attention de la part des chercheurs. Ce travail de thรจse apporte des contributions ร  l'application de cette approche aux systรจmes de lois de conservation. Nous prรฉsentons tout d'abord une preuve de stabilitรฉ complรจte de la COHG pour certaines classes de systรจmes en dimension infinie. Ce rรฉsultat est ensuite utilisรฉ pour les systรจmes hyperboliques 2x2 commandรฉs aux frontiรจres et appliquรฉ ร  un problรจme de contrรดle de canal d'irrigation. Nous proposons aussi l'extension de cette stratรฉgie au cas de rรฉseaux de systรจmes hyperboliques 2x2 en cascade avec une application ร  un ensemble de canaux d'irrigation connectรฉs. Nous รฉtudions รฉgalement les avantages de la COHG dans le contexte des systรจmes non linรฉaires et semi-linรฉaires notamment vis-ร -vis des chocs. Toutes les analyses thรฉoriques sont validรฉes par simulation afin d'illustrer l'efficacitรฉ de l'approche proposรฉe.The predictive control or Receding Horizon Optimal Control (RHOC) is becoming increasingly popular in many practical applications due to its significant advantages such as the stabilization and constraints handling. It has been well studied for finite dimensional systems even in the nonlinear case. However, its extension to infinite dimensional systems has not received much attention from researchers. This thesis proposes contributions on the application of this approach to systems of conservation laws. We present a complete proof of stability of RHOC for some classes of infinite dimensional systems. This result is then used for 2x2 hyperbolic systems with boundary control, and applied to an irrigation canal. We also propose the extension of this strategy to networks of cascaded 2x2 hyperbolic systems with an application to a set of connected irrigation canals. Furthermore, we study the benefits of RHOC in the context of nonlinear and semi-linear systems in particular with respect to the problem of shocks. All theoretical analyzes are validated by simulation in order to illustrate the effectiveness of the proposed approach.SAVOIE-SCD - Bib.รฉlectronique (730659901) / SudocGRENOBLE1/INP-Bib.รฉlectronique (384210012) / SudocGRENOBLE2/3-Bib.รฉlectronique (384219901) / SudocSudocFranceF

    Cooperative Estimation and Control of Large-scale Process Networks

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2017. 2. ์ด์ข…๋ฏผ.๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ๊ณต์ • ๋„คํŠธ์›Œํฌ์˜ ํ˜‘๋™ ์ถ”์ • ๋ฐ ์ œ์–ด์— ๊ด€ํ•œ ์—ฐ๊ตฌ์ด๋ฉฐ ๊ธฐ์กด ๋Œ€๊ทœ๋ชจ ๊ณต์ •์˜ ์ถ”์ • ๋ฐ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•œ ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ๋Œ€๊ทœ๋ชจ ์‹œ์Šคํ…œ์˜ ํ•œ ๊ฐ€์ง€ ์˜ˆ๋กœ ์ฃผ๋กœ ๋Œ€๊ทœ๋ชจ ์ƒ์ˆ˜๊ด€๋ง์„ ๋Œ€์ƒ์œผ๋กœ ํ•˜์—ฌ ๋ชจ๋ธ๋ง ๋ฐ ์ถ”์ •์„ ํ†ตํ•ด ์ด์ƒ ์ง„๋‹จ ๋ฐ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ์ƒ์ˆ˜๊ด€๋ง์—์„œ ๋ˆ„์ˆ˜, ํŒŒ์—ด ๋“ฑ์˜ ์ด์ƒ์ด ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ์‹œ์Šคํ…œ์˜ ํฌ๊ธฐ ๋ฐ ๋ณต์žก์„ฑ์œผ๋กœ ์ธํ•ด ์ด๋ฅผ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์ƒ์ˆ˜๊ด€๋ง์˜ ์ด์ƒ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•œ ์••๋ ฅ ์ „ํŒŒ ๋ชจ๋ธ์ด ์กด์žฌํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์‹œ์Šคํ…œ ๋ชจ๋ธ ์—†์ด ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ๊ฐ์ง€ ๋ฐ ์ง„๋‹จํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ธฐ์กด์— ํ™”ํ•™๊ณต์ •์—์„œ ์ด์ƒ๊ฐ์ง€๋ฅผ ์œ„ํ•ด ๋งŽ์ด ์“ฐ์ด๋Š” ํ†ต๊ณ„์  ๊ธฐ๋ฒ•์ธ cumulative sum(CUSUM)๊ณผ ํŠน์ด์ ์„ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” discrete wavelet transform(DWT)์„ ํ†ตํ•ฉํ•œ ์ƒˆ๋กœ์šด ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๊ณ , ์ด์ƒ๊ฐ์ง€ ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ์ƒ์ˆ˜๊ด€๋ง์—์„œ ๊ฐ„๋‹จํ•œ ์ตœ์ ํ™” ํ•ด๋ฒ•์œผ๋กœ ์ด์ƒ์˜ ์œ„์น˜๋ฅผ ์ง„๋‹จํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹ค์ œ ์ƒ์ˆ˜๊ด€๋ง์˜ ์ด์ƒ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฒ€์ฆํ•˜์˜€๊ณ  ์ง„๋‹จ ์˜ค์ฐจ๊ฐ€ 30 m ์ด๋‚ด๋กœ ๊ธฐ์กด ๊ธฐ์ˆ  ๋Œ€๋น„ ์ด์ƒ ์ง„๋‹จ ์˜ค์ฐจ๋ฅผ ํ˜„์ €ํžˆ ์ค„์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ƒ์ˆ˜๊ด€๋ง์˜ ์••๋ ฅ ์ „ํŒŒ ๋ชจ๋ธ์ด ์กด์žฌํ•œ๋‹ค๋ฉด ์ƒํƒœ์ถ”์ •(state estimation)์„ ์ด์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋น„ํ•ด ์‰ฝ๊ณ  ๋น ๋ฅด๊ฒŒ ์ด์ƒ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ƒ์ˆ˜๊ด€๋ง์˜ ์ด์ƒ์œผ๋กœ ์ธํ•œ ์••๋ ฅ ์ „ํŒŒ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ชจ๋ธ๋ง์„ ์œ„ํ•ด consensus ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ผ๋Š”, ๋„คํŠธ์›Œํฌ์—์„œ์˜ ๋…ธ๋“œ ๊ฐ„์˜ ์ƒํƒœ(state)๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์˜€๊ณ  consensus ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ƒ์ˆ˜๊ด€๋ง์— ๋งž๊ฒŒ ์ˆ˜์ •ํ•˜์—ฌ ๋ณต์žกํ•œ ์••๋ ฅ ์ „ํŒŒ ๋ชจ๋ธ์„ ์„ ํ˜•์˜ ๊ฐ„๋‹จํ•œ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ์‹ค์ œ ์‹คํ—˜ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ ์ œ์•ˆํ•œ consensus ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ์‹ค์ œ ์••๋ ฅ ์ „ํŒŒ ๋‹ค์ด๋‚˜๋ฏน์Šค๋ฅผ 15% ์ด๋‚ด์˜ ์˜ค์ฐจ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์œ„์—์„œ ๊ฐœ๋ฐœํ•œ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ๋„คํŠธ์›Œํฌ ์‹œ์Šคํ…œ์—์„œ์˜ ์ƒํƒœ์ถ”์ • ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ ์ƒˆ๋กœ์šด ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ์นผ๋งŒํ•„ํ„ฐ(Kalman filter) ๋“ฑ์˜ ์ƒํƒœ์ถ”์ • ๋ฐฉ๋ฒ•์€ ์ƒ์ˆ˜๊ด€๋ง๊ณผ ๊ฐ™์€ ๋Œ€๊ทœ๋ชจ ์‹œ์Šคํ…œ์— ์ ์šฉ๋  ๊ฒฝ์šฐ ์‹œ์Šคํ…œ์˜ ๊ทœ๋ชจ๊ฐ€ ๋งค์šฐ ํฌ๊ธฐ ๋•Œ๋ฌธ์— ๊ณ„์‚ฐ๋Ÿ‰ ๋“ฑ์˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ „์ฒด ์‹œ์Šคํ…œ์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์„œ๋ธŒ์‹œ์Šคํ…œ์œผ๋กœ ๋‚˜๋ˆˆ decentralized ์ถ”์ • ๋ฐฉ๋ฒ•์ด ์—ฐ๊ตฌ๊ฐ€ ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ์„œ๋ธŒ์‹œ์Šคํ…œ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด distributed ์ถ”์ •์ด ์—ฐ๊ตฌ๋˜์—ˆ์ง€๋งŒ ์ด ๋ฐฉ์‹์€ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง์— ๋”ฐ๋ผ์„œ ์„œ๋ธŒ์‹œ์Šคํ…œ์˜ estimator์˜ ํฌ๊ธฐ ๋˜ํ•œ ์ปค์ง€๋Š”, ์ฆ‰ scalability๊ฐ€ ์—†๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ด๋Ÿฌํ•œ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์„ ๋ณด์™„ํ•œ ์ƒˆ๋กœ์šด cooperative estimation ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. Cooperative state estimation์„ ์ƒ์ˆ˜๊ด€๋ง ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋Œ€๊ทœ๋ชจ ํ™”ํ•™๊ณต์ •์—๋„ ์ ์šฉํ•˜์—ฌ decentralized ๊ทธ๋ฆฌ๊ณ  distributed ๋ฐฉ์‹์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๋ฉด์„œ centralized estimation๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ๊ฐ€์ง์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, cooperative estimation ๊ฐœ๋ฐœ์— ์‚ฌ์šฉํ•œ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋˜‘๊ฐ™์ด ์ ์šฉํ•˜์—ฌ cooperative model predictive control(cooperative MPC)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. Cooperative MPC ๋˜ํ•œ ๋Œ€๊ทœ๋ชจ ๊ณต์ • ๋„คํŠธ์›Œํฌ์˜ ์ œ์–ด์— ์žˆ์–ด ๊ธฐ์กด์˜ decentralized ๋˜๋Š” distributed MPC์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๋Š” ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ, ๋Œ€๊ทœ๋ชจ ํ™”ํ•™๊ณต์ •์— ์ ์šฉํ•˜์—ฌ centralized MPC์™€ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ๋ฐ•์‚ฌ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ๋Œ€๊ทœ๋ชจ ๊ณต์ •์˜ ์ถ”์ • ๋ฐ ์ œ์–ด๋ฅผ ์œ„ํ•œ cooperative KF ๊ทธ๋ฆฌ๊ณ  cooperative MPC๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ธฐ์กด์˜ centralized์˜ ๊ณ„์‚ฐ๋Ÿ‰ ๋ฌธ์ œ, decentralized์˜ ์ƒํ˜ธ์ž‘์šฉ ๋ฌธ์ œ, ๊ทธ๋ฆฌ๊ณ  distributed์˜ scalability ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ ์ƒˆ๋กœ์šด ์ถ”์ • ๋ฐ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค.State estimation and control of large-scale process network systems are considered as difficult problems because they consist of numerous subsystems and interactions between subsystems make the entire network dynamics complicated. Chemical processes and pipe networks are representative large-scale networks. In this thesis, we propose a novel cooperative estimation and control algorithms of large-scale process networks. In water pipe networks, a fault such as pipe leak or burst often happens and it is difficult to detect and diagnose. For fault detection and location of water pipe networks, state estimation can be an effective tool. However, a mathematical model describing dynamics of leak in water pipe networks does not exist. Before we develop a mathematical model of water pipe network, we propose a novel methodology to detect and locate leak in water pipe networks. Conventional detection methods include a cumulative sum (CUSUM) and a wavelet transform (WT). However, the CUSUM has a problem of slow response and the WT is sensitive to signal transitions. We integrate two algorithms to effectively detect sudden pressure changes of water pipe networks. The developed leak detection and location system is validated with real field data obtained from artificial leaks by opening hydrant valves in small-scale and medium-scale pipe networks and natural leak occurred in large-scale pipe network. The developed algorithm is model-free approach to detection and location of leak in water pipe networks. We propose consensus algorithm based mathematical model of leak dynamics. Modeling the flow dynamics of leaks in water pipe networks is an extremely difficult problem due to the complex entangled network structure and hydraulic phenomenon. We propose a fundamental model for negative pressure wave dynamics of leaks in water pipe networks based on a consensus algorithm and water hammer theory. The resulting model is a simple and linearly interconnected model in the network even though the dynamics of water pipe networks has a considerable complexity. The model is then validated using experimental data obtained from a real water pipe network. A comparative study demonstrates that the proposed model can describe the real system with high qualitative and quantitative accuracy and that it can be used to develop a model-based leak detection and location algorithm based on the state estimation approach. Using the developed model, we develop a fault detection and location algorithm based on state estimation in water pipe networks. The detection algorithm is based on cooperative Hโˆž-estimation for large-scale interconnected linear systems. To show applicability of the proposed model, we apply distributed and cooperative estimation with Hโˆž-performance to the developed model. The estimation result demonstrates the consensus algorithm based pipe network model can be potentially used for leak detection and location with state estimation method. Hโˆž-based design provides guaranteed performance with respect to model and measurement disturbances. Also, we propose cooperative Kalman filter of large-scale network systems. Basic concepts are based on cooperative Hโˆž-estimation used for detection and location. The proposed cooperative Kalman filter can show fully decentralized or fully distributed state estimation performance depending on parameter selection. It is demonstrated using large-scale chemical process network. We finally propose a cooperative model predictive control of large-scale process networks based on the same concepts and ideas used to develop cooperative state estimation. Important properties of stability, optimality, local controllability, and scalability are also proved. When the developed cooperative MPC is applied to chemical process network composed of three process units, it shows performance between decentralized and distributed manners. We also show that the proposed cooperative MPC is the same with centralized MPC under certain condition.1. Introduction 1 1.1 Background and Motivation 1 1.2 Preliminaries 2 1.2.1 Network topology 3 1.2.2 Consensus algorithm 4 1.2.3 State Estimation for large-scale networks 6 1.2.4 Control for large-scale networks 9 1.3 Contribution 17 1.4 Outline 18 2. Model-free Approach to Fault Detection and Location of Water Pipe Networks 20 2.1 Introduction 20 2.2 Detection Algorithm 24 2.2.1 Noise filtering of raw pressure data 24 2.2.2 Cumulative sum for global detection 25 2.2.3 Discrete wavelet transform for local time correction 26 2.3 Location Algorithm 29 2.3.1 Negative pressure wave 29 2.3.2 Node matrix 31 2.3.3 Objective function 32 2.4 Integrated System 33 2.5 Experiments and Validations 34 2.5.1 Small-scale pipe network with artificial faults 34 2.5.2 Medium-scale pipe network with artificial faults 43 2.5.3 Large-scale pipe network with natural faults 46 2.6 Limitations for applicability to complex networks 52 2.7 Conclusions 53 3. Consensus Algorithm for Process Networks 54 3.1 Introduction 54 3.2 Consensus Algorithm based Process Network Model 59 3.2.1 Consensus in networks 59 3.3 Application to Water Pipe Networks 60 3.3.1 Flow dynamics based on consensus algorithm 61 3.3.2 Water hammer theory 62 3.3.3 Dynamics at leak point 64 3.3.4 Complete model 65 3.3.5 Experiment 66 3.3.6 Validation 69 3.4 Conclusions 74 4. Cooperative State Estimation of Large-scale Process Networks 77 4.1 Introduction 77 4.2 System Model and Repartition 79 4.2.1 System model 79 4.2.2 Repartition of system model 82 4.3 Cooperative State Estimation Based on Kalman Filter 84 4.3.1 Standard Kalman filter 84 4.3.2 Cooperative Kalman filter 87 4.4 Application I: Water Pipe Networks for Fault Detection and Location 98 4.5 Application II: Chemical Process Networks with Recycles 104 4.5.1 Network model 104 4.5.2 Simulation results 109 4.6 Conclusions 109 5. Cooperative Model Predictive Control of Large-scale Process Networks 112 5.1 Introduction 113 5.2 System Model and Repartition 115 5.3 Cooperative Model Predictive Control 116 5.3.1 Centralized MPC 116 5.3.2 Cooperative MPC 120 5.4 Application to Chemical Process Networks with Recycles 121 5.5 Conclusions 121 6. Concluding Remarks 123 6.1 Concluding Remarks 123 6.2 Future Directions 126 Bibliography 127 ์ดˆ๋ก 138Docto

    40 Years Theory and Model at Wageningen UR

    Get PDF
    "Theorie en model" zo luidde de titel van de inaugurele rede van CT de Wit (1968). Reden genoeg voor een (theoretische) terugblik op zijn wer

    Automation and Control Architecture for Hybrid Pipeline Robots

    Get PDF
    The aim of this research project, towards the automation of the Hybrid Pipeline Robot (HPR), is the development of a control architecture and strategy, based on reconfiguration of the control strategy for speed-controlled pipeline operations and self-recovering action, while performing energy and time management. The HPR is a turbine powered pipeline device where the flow energy is converted to mechanical energy for traction of the crawler vehicle. Thus, the device is flow dependent, compromising the autonomy, and the range of tasks it can perform. The control strategy proposes pipeline operations supervised by a speed control, while optimizing the energy, solved as a multi-objective optimization problem. The states of robot cruising and self recovering, are controlled by solving a neuro-dynamic programming algorithm for energy and time optimization, The robust operation of the robot includes a self-recovering state either after completion of the mission, or as a result of failures leading to the loss of the robot inside the pipeline, and to guaranteeing the HPR autonomy and operations even under adverse pipeline conditions Two of the proposed models, system identification and tracking system, based on Artificial Neural Networks, have been simulated with trial data. Despite the satisfactory results, it is necessary to measure a full set of robotโ€™s parameters for simulating the complete control strategy. To solve the problem, an instrumentation system, consisting on a set of probes and a signal conditioning board, was designed and developed, customized for the HPRโ€™s mechanical and environmental constraints. As a result, the contribution of this research project to the Hybrid Pipeline Robot is to add the capabilities of energy management, for improving the vehicle autonomy, increasing the distances the device can travel inside the pipelines; the speed control for broadening the range of operations; and the self-recovery capability for improving the reliability of the device in pipeline operations, lowering the risk of potential loss of the robot inside the pipeline, causing the degradation of pipeline performance. All that means the pipeline robot can target new market sectors that before were prohibitive
    • โ€ฆ
    corecore