2,092 research outputs found

    An Economic Model-Based Predictive Control to Manage the Users' Thermal Comfort in a Building

    Get PDF
    The goal of maintaining users' thermal comfort conditions in indoor environments may require complex regulation procedures and a proper energy management. This problem is being widely analyzed, since it has a direct effect on users' productivity. This paper presents an economic model-based predictive control (MPC) whose main strength is the use of the day-ahead price (DAP) in order to predict the energy consumption associated with the heating, ventilation and air conditioning (HVAC). In this way, the control system is able to maintain a high thermal comfort level by optimizing the use of the HVAC system and to reduce, at the same time, the energy consumption associated with it, as much as possible. Later, the performance of the proposed control system is tested through simulations with a non-linear model of a bioclimatic building room. Several simulation scenarios are considered as a test-bed. From the obtained results, it is possible to conclude that the control system has a good behavior in several situations, i.e., it can reach the users' thermal comfort for the analyzed situations, whereas the HVAC use is adjusted through the DAP; therefore, the energy savings associated with the HVAC is increased.Spanish Ministry of Science and Innovation [DPI2014-56364-C2-1-R]; EU-ERDF funds; Competitiveness and ERDF funds; Fundacion Iberdrola Espana; Portuguese Foundation for Science & Technology, through IDMEC, under LAETA [ID/EMS/50022/2013

    Wireless sensors and IoT platform for intelligent HVAC control

    Get PDF
    Energy consumption of buildings (residential and non-residential) represents approximately 40% of total world electricity consumption, with half of this energy consumed by HVAC systems. Model-Based Predictive Control (MBPC) is perhaps the technique most often proposed for HVAC control, since it offers an enormous potential for energy savings. Despite the large number of papers on this topic during the last few years, there are only a few reported applications of the use of MBPC for existing buildings, under normal occupancy conditions and, to the best of our knowledge, no commercial solution yet. A marketable solution has been recently presented by the authors, coined the IMBPC HVAC system. This paper describes the design, prototyping and validation of two components of this integrated system, the Self-Powered Wireless Sensors and the IOT platform developed. Results for the use of IMBPC in a real building under normal occupation demonstrate savings in the electricity bill while maintaining thermal comfort during the whole occupation schedule.QREN SIDT [38798]; Portuguese Foundation for Science & Technology, through IDMEC, under LAETA [ID/EMS/50022/2013

    Neural network based predictive control of personalized heating systems

    Get PDF
    The aim of a personalized heating system is to provide a desirable microclimate for each individual when heating is needed. In this paper, we present a method based on machine learning algorithms for generation of predictive models for use in control of personalized heating systems. Data was collected from two individual test subjects in an experiment that consisted of 14 sessions per test subject with each session lasting 4 h. A dynamic recurrent nonlinear autoregressive neural network with exogenous inputs (NARX) was used for developing the models for the prediction of personalized heating settings. The models for subjects A and B were tested with the data that was not used in creating the neural network (unseen data) to evaluate the accuracy of the prediction. Trained NARX showed good performance when tested with the unseen data, with no sign of overfitting. For model A, the optimal network was with 12 hidden neurons with root mean square error equal to 0.043 and Pearson correlation coefficient equal to 0.994. The best result for model B was obtained with a neural network with 16 hidden neurons with root mean square error equal to 0.049 and Pearson correlation coefficient equal to 0.966. In addition to the neural network models, several other machine learning algorithms were tested. Furthermore, the models were on-line tested and the results showed that the test subjects were satisfied with the heating settings that were automatically controlled using the models. Tests with automatic control showed that both test subjects felt comfortable throughout the tests and test subjects expressed their satisfaction with the automatic control

    Simulation of a model-based optimal controller for heating systems under realistic hypothesis

    Get PDF
    An optimal controller for auxiliary heating of passive solar buildings and commercial buildings with high internal gains is tested in simulation. Some of the most restrictive simplifications that were used in previous studies of that controller (Kummert et al., 2001) are lifted: the controller is applied to a multizone building, and a detailed model is used for the HVAC system. The model-based control algorithm is not modified. It is based on a simplified internal model
    corecore