4,718 research outputs found

    Scaling energy management in buildings with artificial intelligence

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    VI Workshop on Computational Data Analysis and Numerical Methods: Book of Abstracts

    Get PDF
    The VI Workshop on Computational Data Analysis and Numerical Methods (WCDANM) is going to be held on June 27-29, 2019, in the Department of Mathematics of the University of Beira Interior (UBI), Covilhã, Portugal and it is a unique opportunity to disseminate scientific research related to the areas of Mathematics in general, with particular relevance to the areas of Computational Data Analysis and Numerical Methods in theoretical and/or practical field, using new techniques, giving especial emphasis to applications in Medicine, Biology, Biotechnology, Engineering, Industry, Environmental Sciences, Finance, Insurance, Management and Administration. The meeting will provide a forum for discussion and debate of ideas with interest to the scientific community in general. With this meeting new scientific collaborations among colleagues, namely new collaborations in Masters and PhD projects are expected. The event is open to the entire scientific community (with or without communication/poster)

    Urban building energy modelling for retrofit analysis under uncertainty

    Get PDF
    Urban building energy modelling (UBEM) is a growing research field that seeks to expand conventional building energy modelling to the realm of neighbourhoods, cities or even entire building stocks. The aim is to establish frameworks for analysing combined urban e˙ects rather than those of individual buildings, which city governments, utilities and other energy policy stakeholders can use to assess the current environmental impact of our buildings, and, maybe more importantly, the future e˙ects that energy renovation programmes and energy supply infrastructure changes might have. However, the task of creating reliable models of new or existing urban areas is diÿcult, as it requires an enormous amount of detailed input data – data which is rarely available. A solution to this problem is the introduction of archetype modelling, which is used to break down the building stock into a manageable subset of semantic building archetypes, for which, it is possible to characterize their parameters. It is the focus of this thesis to explore and develop new methods for stochastic archetype characterization that can enable archetype-based UBEM to be used for accurate urban-scale time series analysis.The thesis is divided into three parts. The first part acts as an introduction to case study data of the residential building stock of detached single-family houses (SFHs) in Aarhus, Denmark, which is used throughout the thesis for demonstration purposes.The second part concerns the development of methods for archetype modelling. Bayesian methods for archetype parameter calibration are presented that incorporates the variability of the underlying cluster of buildings, and correlation between parameters, to enable informed predictions of unseen buildings from the archetype under uncertainty. The capabilities of archetype-based UBEM are further widened through the introduction of dynamic building energy modelling that allows for time series analysis.The third part of the thesis is devoted to demonstrating the usefulness of the proposed archetype formulation as a building block for urban-scale applications. An exhaustive test scheme is employed to validate the predictive performance of the framework before establishing a city-scale UBEM of approx. 23,000 SFHs in Aarhus. It is used to forecast citywide heating energy use from 2017 up until 2050 under uncertainty of energy renovations and climate change.Overall, the proposed archetype-based UBEM framework promises very useful for fast, flexible and reliable urban-scale time series analysis, including forecasting the effects of energy renovation or city densification, to establish an informed basis for energy policy decision-making

    Quantifying fisher responses to environmental and regulatory dynamics in marine systems

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Commercial fisheries are part of an inherently complicated cycle. As fishers have adopted new technologies and larger vessels to compete for resources, fisheries managers have adapted regulatory structures to sustain stocks and to mitigate unintended impacts of fishing (e.g., bycatch). Meanwhile, the ecosystems that are targeted by fishers are affected by a changing climate, which in turn forces fishers to further adapt, and subsequently, will require regulations to be updated. From the management side, one of the great limitations for understanding how changes in fishery environments or regulations impact fishers has been a lack of sufficient data for resolving their behaviors. In some fisheries, observer programs have provided sufficient data for monitoring the dynamics of fishing fleets, but these programs are expensive and often do not cover every trip or vessel. In the last two decades however, vessel monitoring systems (VMS) have begun to provide vessel location data at regular intervals such that fishing effort and behavioral decisions can be resolved across time and space for many fisheries. I demonstrate the utility of such data by examining the responses of two disparate fishing fleets to environmental and regulatory changes. This study was one of "big data" and required the development of nuanced approaches to process and model millions of records from multiple datasets. I thus present the work in three components: (1) How can we extract the information that we need? I present a detailed characterization of the types of data and an algorithm used to derive relevant behavioral aspects of fishing, like the duration and distances traveled during fishing trips; (2) How do fishers' spatial behaviors in the Bering Sea pollock fishery change in response to environmental variability; and (3) How were fisher behaviors and economic performances affected by a series of regulatory changes in the Gulf of Mexico grouper-tilefish longline fishery? I found a high degree of heterogeneity among vessel behaviors within the pollock fishery, underscoring the role that markets and processor-level decisions play in facilitating fisher responses to environmental change. In the Gulf of Mexico, my VMS-based approach estimated unobserved fishing effort with a high degree of accuracy and confirmed that the regulatory shift (e.g., the longline endorsement program and catch share program) yielded the intended impacts of reducing effort and improving both the economic performance and the overall harvest efficiency for the fleet. Overall, this work provides broadly applicable approaches for testing hypotheses regarding the dynamics of spatial behaviors in response to regulatory and environmental changes in a diversity of fisheries around the world.General introduction -- Chapter 1 Using vessel monitoring system data to identify and characterize trips made by fishing vessels in the United States North Pacific -- Chapter 2 Paths to resilience: Alaska pollock fleet uses multiple fishing strategies to buffer against environmental change in the Bering Sea -- Chapter 3 Vessel monitoring systems (VMS) reveal increased fishing efficiency following regulatory change in a bottom longline fishery -- General Conclusions
    • …
    corecore