13,895 research outputs found

    Backward adaptive pixel-based fast predictive motion estimation

    Get PDF

    Semi-hierarchical based motion estimation algorithm for the dirac video encoder

    Get PDF
    Having fast and efficient motion estimation is crucial in today’s advance video compression technique since it determines the compression efficiency and the complexity of a video encoder. In this paper, a method which we call semi-hierarchical motion estimation is proposed for the Dirac video encoder. By considering the fully hierarchical motion estimation only for a certain type of inter frame encoding, complexity of the motion estimation can be greatly reduced while maintaining the desirable accuracy. The experimental results show that the proposed algorithm gives two to three times reduction in terms of the number of SAD calculation compared with existing motion estimation algorithm of Dirac for the same motion estimation accuracy, compression efficiency and PSNR performance. Moreover, depending upon the complexity of the test sequence, the proposed algorithm has the ability to increase or decrease the search range in order to maintain the accuracy of the motion estimation to a certain level

    A Three-Point Directional Search Block Matching Algorithm

    Get PDF
    This paper proposes compact directional asymmetric search patterns, which we have named as three-point directional search (TDS). In most fast search motion estimation algorithms, a symmetric search pattern is usually set at the minimum block distortion point at each step of the search. The design of the symmetrical pattern in these algorithms relies primarily on the assumption that the direction of convergence is equally alike in each direction with respect to the search center. Therefore, the monotonic property of real-world video sequences is not properly used by these algorithms. The strategy of TDS is to keep searching for the minimum block distortion point in the most probable directions, unlike the previous fast search motion estimation algorithms where all the directions are checked. Therefore, the proposed method significantly reduces the number of search points for locating a motion vector. Compared to conventional fast algorithms, the proposed method has the fastest search speed and most satisfactory PSNR values for all test sequences

    Complexity Analysis Of Next-Generation VVC Encoding and Decoding

    Full text link
    While the next generation video compression standard, Versatile Video Coding (VVC), provides a superior compression efficiency, its computational complexity dramatically increases. This paper thoroughly analyzes this complexity for both encoder and decoder of VVC Test Model 6, by quantifying the complexity break-down for each coding tool and measuring the complexity and memory requirements for VVC encoding/decoding. These extensive analyses are performed for six video sequences of 720p, 1080p, and 2160p, under Low-Delay (LD), Random-Access (RA), and All-Intra (AI) conditions (a total of 320 encoding/decoding). Results indicate that the VVC encoder and decoder are 5x and 1.5x more complex compared to HEVC in LD, and 31x and 1.8x in AI, respectively. Detailed analysis of coding tools reveals that in LD on average, motion estimation tools with 53%, transformation and quantization with 22%, and entropy coding with 7% dominate the encoding complexity. In decoding, loop filters with 30%, motion compensation with 20%, and entropy decoding with 16%, are the most complex modules. Moreover, the required memory bandwidth for VVC encoding/decoding are measured through memory profiling, which are 30x and 3x of HEVC. The reported results and insights are a guide for future research and implementations of energy-efficient VVC encoder/decoder.Comment: IEEE ICIP 202

    Single step optimal block matched motion estimation with motion vectors having arbitrary pixel precisions

    Get PDF
    This paper proposes a non-linear block matched motion model with motion vectors having arbitrary pixel precisions. The optimal motion vector which minimizes the mean square error is solved analytically in a single step. Our proposed algorithm can be regarded as a generalization of conventional half pixel search algorithms and quarter pixel search algorithms because our proposed algorithm could achieve motion vectors with arbitrary pixel precisions. Also, the computational effort of our proposed algorithm is lower than that of conventional quarter pixel search algorithms because our proposed algorithm could achieve motion vectors in a single step

    An efficient search strategy for block motion estimation using image features

    Get PDF
    2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore