24,898 research outputs found

    Machine learning for the prediction of protein-protein interactions

    Get PDF
    The prediction of protein-protein interactions (PPI) has recently emerged as an important problem in the fields of bioinformatics and systems biology, due to the fact that most essential cellular processes are mediated by these kinds of interactions. In this thesis we focussed in the prediction of co-complex interactions, where the objective is to identify and characterize protein pairs which are members of the same protein complex. Although high-throughput methods for the direct identification of PPI have been developed in the last years. It has been demonstrated that the data obtained by these methods is often incomplete and suffers from high false-positive and false-negative rates. In order to deal with this technology-driven problem, several machine learning techniques have been employed in the past to improve the accuracy and trustability of predicted protein interacting pairs, demonstrating that the combined use of direct and indirect biological insights can improve the quality of predictive PPI models. This task has been commonly viewed as a binary classification problem. However, the nature of the data creates two major problems. Firstly, the imbalanced class problem due to the number of positive examples (pairs of proteins which really interact) being much smaller than the number of negative ones. Secondly, the selection of negative examples is based on some unreliable assumptions which could introduce some bias in the classification results. The first part of this dissertation addresses these drawbacks by exploring the use of one-class classification (OCC) methods to deal with the task of prediction of PPI. OCC methods utilize examples of just one class to generate a predictive model which is consequently independent of the kind of negative examples selected; additionally these approaches are known to cope with imbalanced class problems. We designed and carried out a performance evaluation study of several OCC methods for this task. We also undertook a comparative performance evaluation with several conventional learning techniques. Furthermore, we pay attention to a new potential drawback which appears to affect the performance of PPI prediction. This is associated with the composition of the positive gold standard set, which contain a high proportion of examples associated with interactions of ribosomal proteins. We demonstrate that this situation indeed biases the classification task, resulting in an over-optimistic performance result. The prediction of non-ribosomal PPI is a much more difficult task. We investigate some strategies in order to improve the performance of this subtask, integrating new kinds of data as well as combining diverse classification models generated from different sets of data. In this thesis, we undertook a preliminary validation study of the new PPI predicted by using OCC methods. To achieve this, we focus in three main aspects: look for biological evidence in the literature that support the new predictions; the analysis of predicted PPI networks properties; and the identification of highly interconnected groups of proteins which can be associated with new protein complexes. Finally, this thesis explores a slightly different area, related to the prediction of PPI types. This is associated with the classification of PPI structures (complexes) contained in the Protein Data Bank (PDB) data base according to its function and binding affinity. Considering the relatively reduced number of crystalized protein complexes available, it is not possible at the moment to link these results with the ones obtained previously for the prediction of PPI complexes. However, this could be possible in the near future when more PPI structures will be available

    Prediction of protein-protein interactions using one-class classification methods and integrating diverse data

    Get PDF
    This research addresses the problem of prediction of protein-protein interactions (PPI) when integrating diverse kinds of biological information. This task has been commonly viewed as a binary classification problem (whether any two proteins do or do not interact) and several different machine learning techniques have been employed to solve this task. However the nature of the data creates two major problems which can affect results. These are firstly imbalanced class problems due to the number of positive examples (pairs of proteins which really interact) being much smaller than the number of negative ones. Secondly the selection of negative examples can be based on some unreliable assumptions which could introduce some bias in the classification results. Here we propose the use of one-class classification (OCC) methods to deal with the task of prediction of PPI. OCC methods utilise examples of just one class to generate a predictive model which consequently is independent of the kind of negative examples selected; additionally these approaches are known to cope with imbalanced class problems. We have designed and carried out a performance evaluation study of several OCC methods for this task, and have found that the Parzen density estimation approach outperforms the rest. We also undertook a comparative performance evaluation between the Parzen OCC method and several conventional learning techniques, considering different scenarios, for example varying the number of negative examples used for training purposes. We found that the Parzen OCC method in general performs competitively with traditional approaches and in many situations outperforms them. Finally we evaluated the ability of the Parzen OCC approach to predict new potential PPI targets, and validated these results by searching for biological evidence in the literature

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Prediction of protein-protein interaction types using association rule based classification

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Park et alBackground: Protein-protein interactions (PPI) can be classified according to their characteristics into, for example obligate or transient interactions. The identification and characterization of these PPI types may help in the functional annotation of new protein complexes and in the prediction of protein interaction partners by knowledge driven approaches. Results: This work addresses pattern discovery of the interaction sites for four different interaction types to characterize and uses them for the prediction of PPI types employing Association Rule Based Classification (ARBC) which includes association rule generation and posterior classification. We incorporated domain information from protein complexes in SCOP proteins and identified 354 domain-interaction sites. 14 interface properties were calculated from amino acid and secondary structure composition and then used to generate a set of association rules characterizing these domain-interaction sites employing the APRIORI algorithm. Our results regarding the classification of PPI types based on a set of discovered association rules shows that the discriminative ability of association rules can significantly impact on the prediction power of classification models. We also showed that the accuracy of the classification can be improved through the use of structural domain information and also the use of secondary structure content. Conclusion: The advantage of our approach is that we can extract biologically significant information from the interpretation of the discovered association rules in terms of understandability and interpretability of rules. A web application based on our method can be found at http://bioinfo.ssu.ac.kr/~shpark/picasso/SHP was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2005-214-E00050). JAR has been supported by the Programme Alβan, the European Union Programme of High level Scholarships for Latin America, scholarship E04D034854CL. SK was supported by Soongsil University Research Fund

    Diffusion Component Analysis: Unraveling Functional Topology in Biological Networks

    Full text link
    Complex biological systems have been successfully modeled by biochemical and genetic interaction networks, typically gathered from high-throughput (HTP) data. These networks can be used to infer functional relationships between genes or proteins. Using the intuition that the topological role of a gene in a network relates to its biological function, local or diffusion based "guilt-by-association" and graph-theoretic methods have had success in inferring gene functions. Here we seek to improve function prediction by integrating diffusion-based methods with a novel dimensionality reduction technique to overcome the incomplete and noisy nature of network data. In this paper, we introduce diffusion component analysis (DCA), a framework that plugs in a diffusion model and learns a low-dimensional vector representation of each node to encode the topological properties of a network. As a proof of concept, we demonstrate DCA's substantial improvement over state-of-the-art diffusion-based approaches in predicting protein function from molecular interaction networks. Moreover, our DCA framework can integrate multiple networks from heterogeneous sources, consisting of genomic information, biochemical experiments and other resources, to even further improve function prediction. Yet another layer of performance gain is achieved by integrating the DCA framework with support vector machines that take our node vector representations as features. Overall, our DCA framework provides a novel representation of nodes in a network that can be used as a plug-in architecture to other machine learning algorithms to decipher topological properties of and obtain novel insights into interactomes.Comment: RECOMB 201
    corecore