11,551 research outputs found

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio

    TopologyNet: Topology based deep convolutional neural networks for biomolecular property predictions

    Full text link
    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the entangled geometric complexity and biological complexity. We introduce topology, i.e., element specific persistent homology (ESPH), to untangle geometric complexity and biological complexity. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains crucial biological information via a multichannel image representation. It is able to reveal hidden structure-function relationships in biomolecules. We further integrate ESPH and convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the limitations to deep learning arising from small and noisy training sets, we present a multitask topological convolutional neural network (MT-TCNN). We demonstrate that the present TopologyNet architectures outperform other state-of-the-art methods in the predictions of protein-ligand binding affinities, globular protein mutation impacts, and membrane protein mutation impacts.Comment: 20 pages, 8 figures, 5 table

    RosettaBackrub--a web server for flexible backbone protein structure modeling and design.

    Get PDF
    The RosettaBackrub server (http://kortemmelab.ucsf.edu/backrub) implements the Backrub method, derived from observations of alternative conformations in high-resolution protein crystal structures, for flexible backbone protein modeling. Backrub modeling is applied to three related applications using the Rosetta program for structure prediction and design: (I) modeling of structures of point mutations, (II) generating protein conformational ensembles and designing sequences consistent with these conformations and (III) predicting tolerated sequences at protein-protein interfaces. The three protocols have been validated on experimental data. Starting from a user-provided single input protein structure in PDB format, the server generates near-native conformational ensembles. The predicted conformations and sequences can be used for different applications, such as to guide mutagenesis experiments, for ensemble-docking approaches or to generate sequence libraries for protein design

    PROTS-RF: A Robust Model for Predicting Mutation-Induced Protein Stability Changes

    Get PDF
    The ability to improve protein thermostability via protein engineering is of great scientific interest and also has significant practical value. In this report we present PROTS-RF, a robust model based on the Random Forest algorithm capable of predicting thermostability changes induced by not only single-, but also double- or multiple-point mutations. The model is built using 41 features including evolutionary information, secondary structure, solvent accessibility and a set of fragment-based features. It achieves accuracies of 0.799,0.782, 0.787, and areas under receiver operating characteristic (ROC) curves of 0.873, 0.868 and 0.862 for single-, double- and multiple- point mutation datasets, respectively. Contrary to previous suggestions, our results clearly demonstrate that a robust predictive model trained for predicting single point mutation induced thermostability changes can be capable of predicting double and multiple point mutations. It also shows high levels of robustness in the tests using hypothetical reverse mutations. We demonstrate that testing datasets created based on physical principles can be highly useful for testing the robustness of predictive models

    Prots: A fragment based protein thermo‐stability potential

    Get PDF
    Designing proteins with enhanced thermo‐stability has been a main focus of protein engineering because of its theoretical and practical significance. Despite extensive studies in the past years, a general strategy for stabilizing proteins still remains elusive. Thus effective and robust computational algorithms for designing thermo‐stable proteins are in critical demand. Here we report PROTS, a sequential and structural four‐residue fragment based protein thermo‐stability potential. PROTS is derived from a nonredundant representative collection of thousands of thermophilic and mesophilic protein structures and a large set of point mutations with experimentally determined changes of melting temperatures. To the best of our knowledge, PROTS is the first protein stability predictor based on integrated analysis and mining of these two types of data. Besides conventional cross validation and blind testing, we introduce hypothetical reverse mutations as a means of testing the robustness of protein thermo‐stability predictors. In all tests, PROTS demonstrates the ability to reliably predict mutation induced thermo‐stability changes as well as classify thermophilic and mesophilic proteins. In addition, this white‐box predictor allows easy interpretation of the factors that influence mutation induced protein stability changes at the residue level. Proteins 2012; © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89526/1/23163_ftp.pd
    corecore