89 research outputs found

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    Protecting the Future: Neonatal Seizure Detection with Spatial-Temporal Modeling

    Full text link
    A timely detection of seizures for newborn infants with electroencephalogram (EEG) has been a common yet life-saving practice in the Neonatal Intensive Care Unit (NICU). However, it requires great human efforts for real-time monitoring, which calls for automated solutions to neonatal seizure detection. Moreover, the current automated methods focusing on adult epilepsy monitoring often fail due to (i) dynamic seizure onset location in human brains; (ii) different montages on neonates and (iii) huge distribution shift among different subjects. In this paper, we propose a deep learning framework, namely STATENet, to address the exclusive challenges with exquisite designs at the temporal, spatial and model levels. The experiments over the real-world large-scale neonatal EEG dataset illustrate that our framework achieves significantly better seizure detection performance.Comment: Accepted in IEEE International Conference on Systems, Man, and Cybernetics (SMC) 202

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance

    Epileptic multi-seizure type classification using electroencephalogram signals from the Temple University Hospital Seizure Corpus:A review

    Get PDF
    Epilepsy is one of the most paramount neurological diseases, affecting about 1% of the world's population. Seizure detection and classification are difficult tasks and are ongoing challenges in biomedical signal processing to enhance medical diagnosis. This paper presents and highlights the unique frequency and amplitude information found within multiple seizure types, including their morphologies, to aid the development of future seizure classification algorithms. Whilst many published works in the literature have reported on seizure detection using electroencephalogram (EEG), there has yet to be an exhaustive review detailing multi-seizure type classification using EEG. Therefore, this paper also includes a detailed review of multi-seizure type classification performance based on the Temple University Hospital Seizure Corpus (TUSZ) dataset for focal and generalised classification, and multi-seizure type classification. Deep learning techniques have a higher overall average performance for focal and generalised classification compared to machine learning techniques, whereas hybrid deep learning approaches have the highest overall average performance for multi-seizure type classification. Finally, this paper also highlights the limitations of the TUSZ dataset and suggests some future work, including the curation of a standardised training and testing dataset from the TUSZ that would allow a proper comparison of classification methods and spur advancement in the field.</p

    An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works

    Get PDF
    Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DLbased CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper

    A systematic comparison of deep learning methods for EEG time series analysis

    Get PDF
    Analyzing time series data like EEG or MEG is challenging due to noisy, high-dimensional, and patient-specific signals. Deep learning methods have been demonstrated to be superior in analyzing time series data compared to shallow learning methods which utilize handcrafted and often subjective features. Especially, recurrent deep neural networks (RNN) are considered suitable to analyze such continuous data. However, previous studies show that they are computationally expensive and difficult to train. In contrast, feed-forward networks (FFN) have previously mostly been considered in combination with hand-crafted and problem-specific feature extractions, such as short time Fourier and discrete wavelet transform. A sought-after are easily applicable methods that efficiently analyze raw data to remove the need for problem-specific adaptations. In this work, we systematically compare RNN and FFN topologies as well as advanced architectural concepts on multiple datasets with the same data preprocessing pipeline. We examine the behavior of those approaches to provide an update and guideline for researchers who deal with automated analysis of EEG time series data. To ensure that the results are meaningful, it is important to compare the presented approaches while keeping the same experimental setup, which to our knowledge was never done before. This paper is a first step toward a fairer comparison of different methodologies with EEG time series data. Our results indicate that a recurrent LSTM architecture with attention performs best on less complex tasks, while the temporal convolutional network (TCN) outperforms all the recurrent architectures on the most complex dataset yielding a 8.61% accuracy improvement. In general, we found the attention mechanism to substantially improve classification results of RNNs. Toward a light-weight and online learning-ready approach, we found extreme learning machines (ELM) to yield comparable results for the less complex tasks

    Leveraging Artificial Intelligence to Improve EEG-fNIRS Data Analysis

    Get PDF
    La spectroscopie proche infrarouge fonctionnelle (fNIRS) est apparue comme une technique de neuroimagerie qui permet une surveillance non invasive et à long terme de l'hémodynamique corticale. Les technologies de neuroimagerie multimodale en milieu clinique permettent d'étudier les maladies neurologiques aiguës et chroniques. Dans ce travail, nous nous concentrons sur l'épilepsie - un trouble chronique du système nerveux central affectant près de 50 millions de personnes dans le monde entier prédisposant les individus affectés à des crises récurrentes. Les crises sont des aberrations transitoires de l'activité électrique du cerveau qui conduisent à des symptômes physiques perturbateurs tels que des changements aigus ou chroniques des compétences cognitives, des hallucinations sensorielles ou des convulsions de tout le corps. Environ un tiers des patients épileptiques sont récalcitrants au traitement pharmacologique et ces crises intraitables présentent un risque grave de blessure et diminuent la qualité de vie globale. Dans ce travail, nous étudions 1. l'utilité des informations hémodynamiques dérivées des signaux fNIRS dans une tâche de détection des crises et les avantages qu'elles procurent dans un environnement multimodal par rapport aux signaux électroencéphalographiques (EEG) seuls, et 2. la capacité des signaux neuronaux, dérivé de l'EEG, pour prédire l'hémodynamique dans le cerveau afin de mieux comprendre le cerveau épileptique. Sur la base de données rétrospectives EEG-fNIRS recueillies auprès de 40 patients épileptiques et utilisant de nouveaux modèles d'apprentissage en profondeur, la première étude de cette thèse suggère que les signaux fNIRS offrent une sensibilité et une spécificité accrues pour la détection des crises par rapport à l'EEG seul. La validation du modèle a été effectuée à l'aide de l'ensemble de données CHBMIT open source documenté et bien référencé avant d'utiliser notre ensemble de données EEG-fNIRS multimodal interne. Les résultats de cette étude ont démontré que fNIRS améliore la détection des crises par rapport à l'EEG seul et ont motivé les expériences ultérieures qui ont déterminé la capacité prédictive d'un modèle d'apprentissage approfondi développé en interne pour décoder les signaux d'état de repos hémodynamique à partir du spectre complet et d'une bande de fréquences neuronale codée spécifique signaux d'état de repos (signaux sans crise). Ces résultats suggèrent qu'un autoencodeur multimodal peut apprendre des relations multimodales pour prédire les signaux d'état de repos. Les résultats suggèrent en outre que des gammes de fréquences EEG plus élevées prédisent l'hémodynamique avec une erreur de reconstruction plus faible par rapport aux gammes de fréquences EEG plus basses. De plus, les connexions fonctionnelles montrent des modèles spatiaux similaires entre l'état de repos expérimental et les prédictions fNIRS du modèle. Cela démontre pour la première fois que l'auto-encodage intermodal à partir de signaux neuronaux peut prédire l'hémodynamique cérébrale dans une certaine mesure. Les résultats de cette thèse avancent le potentiel de l'utilisation d'EEG-fNIRS pour des tâches cliniques pratiques (détection des crises, prédiction hémodynamique) ainsi que l'examen des relations fondamentales présentes dans le cerveau à l'aide de modèles d'apprentissage profond. S'il y a une augmentation du nombre d'ensembles de données disponibles à l'avenir, ces modèles pourraient être en mesure de généraliser les prédictions qui pourraient éventuellement conduire à la technologie EEG-fNIRS à être utilisée régulièrement comme un outil clinique viable dans une grande variété de troubles neuropathologiques.----------ABSTRACT Functional near-infrared spectroscopy (fNIRS) has emerged as a neuroimaging technique that allows for non-invasive and long-term monitoring of cortical hemodynamics. Multimodal neuroimaging technologies in clinical settings allow for the investigation of acute and chronic neurological diseases. In this work, we focus on epilepsy—a chronic disorder of the central nervous system affecting almost 50 million people world-wide predisposing affected individuals to recurrent seizures. Seizures are transient aberrations in the brain's electrical activity that lead to disruptive physical symptoms such as acute or chronic changes in cognitive skills, sensory hallucinations, or whole-body convulsions. Approximately a third of epileptic patients are recalcitrant to pharmacological treatment and these intractable seizures pose a serious risk for injury and decrease overall quality of life. In this work, we study 1) the utility of hemodynamic information derived from fNIRS signals in a seizure detection task and the benefit they provide in a multimodal setting as compared to electroencephalographic (EEG) signals alone, and 2) the ability of neural signals, derived from EEG, to predict hemodynamics in the brain in an effort to better understand the epileptic brain. Based on retrospective EEG-fNIRS data collected from 40 epileptic patients and utilizing novel deep learning models, the first study in this thesis suggests that fNIRS signals offer increased sensitivity and specificity metrics for seizure detection when compared to EEG alone. Model validation was performed using the documented open source and well referenced CHBMIT dataset before using our in-house multimodal EEG-fNIRS dataset. The results from this study demonstrated that fNIRS improves seizure detection as compared to EEG alone and motivated the subsequent experiments which determined the predictive capacity of an in-house developed deep learning model to decode hemodynamic resting state signals from full spectrum and specific frequency band encoded neural resting state signals (seizure free signals). These results suggest that a multimodal autoencoder can learn multimodal relations to predict resting state signals. Findings further suggested that higher EEG frequency ranges predict hemodynamics with lower reconstruction error in comparison to lower EEG frequency ranges. Furthermore, functional connections show similar spatial patterns between experimental resting state and model fNIRS predictions. This demonstrates for the first time that intermodal autoencoding from neural signals can predict cerebral hemodynamics to a certain extent. The results of this thesis advance the potential of using EEG-fNIRS for practical clinical tasks (seizure detection, hemodynamic prediction) as well as examining fundamental relationships present in the brain using deep learning models. If there is an increase in the number of datasets available in the future, these models may be able to generalize predictions which would possibly lead to EEG-fNIRS technology to be routinely used as a viable clinical tool in a wide variety of neuropathological disorders
    • …
    corecore