87 research outputs found

    Advanced analyses of physiological signals and their role in Neonatal Intensive Care

    Get PDF
    Preterm infants admitted to the neonatal intensive care unit (NICU) face an array of life-threatening diseases requiring procedures such as resuscitation and invasive monitoring, and other risks related to exposure to the hospital environment, all of which may have lifelong implications. This thesis examined a range of applications for advanced signal analyses in the NICU, from identifying of physiological patterns associated with neonatal outcomes, to evaluating the impact of certain treatments on physiological variability. Firstly, the thesis examined the potential to identify infants at risk of developing intraventricular haemorrhage, often interrelated with factors leading to preterm birth, mechanical ventilation, hypoxia and prolonged apnoeas. This thesis then characterised the cardiovascular impact of caffeine therapy which is often administered to prevent and treat apnoea of prematurity, finding greater pulse pressure variability and enhanced responsiveness of the autonomic nervous system. Cerebral autoregulation maintains cerebral blood flow despite fluctuations in arterial blood pressure and is an important consideration for preterm infants who are especially vulnerable to brain injury. Using various time and frequency domain correlation techniques, the thesis found acute changes in cerebral autoregulation of preterm infants following caffeine therapy. Nutrition in early life may also affect neurodevelopment and morbidity in later life. This thesis developed models for identifying malnutrition risk using anthropometry and near-infrared interactance features. This thesis has presented a range of ways in which advanced analyses including time series analysis, feature selection and model development can be applied to neonatal intensive care. There is a clear role for such analyses in early detection of clinical outcomes, characterising the effects of relevant treatments or pathologies and identifying infants at risk of later morbidity

    Alterations in cortical thickness development in preterm-born individuals:Implications for high-order cognitive functions

    Get PDF
    AbstractVery preterm birth (gestational age <33weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15years) and beginning of adulthood (mean age 20years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing

    Automated classification of neonatal sleep states using EEG

    Get PDF
    Objective: To develop a method for automated neonatal sleep state classification based on EEG that can be applied over a wide range of age. Methods: We collected 231 EEG recordings from 67 infants between 24 and 45 weeks of postmenstrual age. Ten minute epochs of 8 channel polysomnography (N = 323) from active and quiet sleep were used as a training dataset. We extracted a set of 57 EEG features from the time, frequency, and spatial domains. A greedy algorithm was used to define a reduced feature set to be used in a support vector machine classifier. Results: Performance tests showed that our algorithm was able to classify quiet and active sleep epochs with 85% accuracy, 83% sensitivity, and 87% specificity. The performance was not substantially lowered by reducing the epoch length or EEG channel number. The classifier output was used to construct a novel trend, the sleep state probability index, that improves the visualisation of brain state fluctuations. Conclusions: A robust EEG-based sleep state classifier was developed. It performs consistently well across a large span of postmenstrual ages. Significance: This method enables the visualisation of sleep state in preterm infants which can assist clinical management in the neonatal intensive care unit. (C) 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.Peer reviewe

    Machine learning in critical care: state-of-the-art and a sepsis case study

    Get PDF
    Background: Like other scientific fields, such as cosmology, high-energy physics, or even the life sciences, medicine and healthcare face the challenge of an extremely quick transformation into data-driven sciences. This challenge entails the daunting task of extracting usable knowledge from these data using algorithmic methods. In the medical context this may for instance realized through the design of medical decision support systems for diagnosis, prognosis and patient management. The intensive care unit (ICU), and by extension the whole area of critical care, is becoming one of the most data-driven clinical environments. Results: The increasing availability of complex and heterogeneous data at the point of patient attention in critical care environments makes the development of fresh approaches to data analysis almost compulsory. Computational Intelligence (CI) and Machine Learning (ML) methods can provide such approaches and have already shown their usefulness in addressing problems in this context. The current study has a dual goal: it is first a review of the state-of-the-art on the use and application of such methods in the field of critical care. Such review is presented from the viewpoint of the different subfields of critical care, but also from the viewpoint of the different available ML and CI techniques. The second goal is presenting a collection of results that illustrate the breath of possibilities opened by ML and CI methods using a single problem, the investigation of septic shock at the ICU. Conclusion: We have presented a structured state-of-the-art that illustrates the broad-ranging ways in which ML and CI methods can make a difference in problems affecting the manifold areas of critical care. The potential of ML and CI has been illustrated in detail through an example concerning the sepsis pathology. The new definitions of sepsis and the relevance of using the systemic inflammatory response syndrome (SIRS) in its diagnosis have been considered. Conditional independence models have been used to address this problem, showing that SIRS depends on both organ dysfunction measured through the Sequential Organ Failure (SOFA) score and the ICU outcome, thus concluding that SIRS should still be considered in the study of the pathophysiology of Sepsis. Current assessment of the risk of dead at the ICU lacks specificity. ML and CI techniques are shown to improve the assessment using both indicators already in place and other clinical variables that are routinely measured. Kernel methods in particular are shown to provide the best performance balance while being amenable to representation through graphical models, which increases their interpretability and, with it, their likelihood to be accepted in medical practice.Peer ReviewedPostprint (published version

    Non Invasive Tools for Early Detection of Autism Spectrum Disorders

    Get PDF
    Autism Spectrum Disorders (ASDs) describe a set of neurodevelopmental disorders. ASD represents a significant public health problem. Currently, ASDs are not diagnosed before the 2nd year of life but an early identification of ASDs would be crucial as interventions are much more effective than specific therapies starting in later childhood. To this aim, cheap an contact-less automatic approaches recently aroused great clinical interest. Among them, the cry and the movements of the newborn, both involving the central nervous system, are proposed as possible indicators of neurological disorders. This PhD work is a first step towards solving this challenging problem. An integrated system is presented enabling the recording of audio (crying) and video (movements) data of the newborn, their automatic analysis with innovative techniques for the extraction of clinically relevant parameters and their classification with data mining techniques. New robust algorithms were developed for the selection of the voiced parts of the cry signal, the estimation of acoustic parameters based on the wavelet transform and the analysis of the infant’s general movements (GMs) through a new body model for segmentation and 2D reconstruction. In addition to a thorough literature review this thesis presents the state of the art on these topics that shows that no studies exist concerning normative ranges for newborn infant cry in the first 6 months of life nor the correlation between cry and movements. Through the new automatic methods a population of control infants (“low-risk”, LR) was compared to a group of “high-risk” (HR) infants, i.e. siblings of children already diagnosed with ASD. A subset of LR infants clinically diagnosed as newborns with Typical Development (TD) and one affected by ASD were compared. The results show that the selected acoustic parameters allow good differentiation between the two groups. This result provides new perspectives both diagnostic and therapeutic

    Improvements in Neonatal Brain Monitoring after Perinatal Asphyxia

    Get PDF
    Perinatal hypoxic ischemic encephalopathy (HIE) is a major cause of morbidity and mortality world-wide. Common sequelae in survivors include cerebral palsy (CP), epilepsy and sensory as well as cognitive problems. The consequences of HIE impose significant long-term personal and financial burden on the affected families and the society. The most cost-effective approach to reducing neonatal mortality world-wide would be to improve access to antenatal care4. However, even in developed countries, the exact factors triggering perinatal asphyxia as well as the time of onset of brain injury are often difficult to determine, and it remains a major clinical problem. Seizures commonly occur in the neonate with HIE and are often the only sign of serious underlying brain dysfunction6. Animal studies have shown that neonatal seizures in the context of HIE may cause additional brain injury and that their pharmacological suppression may improve outcome9. Monitoring of brain function using the electroencephalogram (EEG), continuously or by serial EEGs is well-suited to give insight into brain function and its dynamic changes in neonatal HIE and helps to guide treatment as well as prognostication. A good understanding of the pathophysiology of HIE is needed not only in the selection of suitable diagnostic tests and treatment methods, but also to develop new therapeutic strategies

    Classification of Foetal Distress and Hypoxia Using Machine Learning

    Get PDF
    Foetal distress and hypoxia (oxygen deprivation) is considered a serious condition and one of the main factors for caesarean section in the obstetrics and gynaecology department. It is considered to be the third most common cause of death in new-born babies. Foetal distress occurs in about 1 in 20 pregnancies. Many foetuses that experience some sort of hypoxic effects can have series risks such as damage to the cells of the central nervous system that may lead to life-long disability (cerebral palsy) or even death. Continuous labour monitoring is essential to observe foetal wellbeing during labour. Many studies have used data from foetal surveillance by monitoring the foetal heart rate with a cardiotocography, which has succeeded traditional methods for foetal monitoring since 1960. Despite the indication of normal results, these results are not reassuring, and a small proportion of these foetuses are actually hypoxic. This study investigates the use of machine learning classifiers for classification of foetal hypoxic cases using a novel method, in which we are not only considering the classification performance only, but also investigating the worth of each participating parameter to the classification as seen by medical literature. The main parameters that are included in this study as indicators of metabolic acidosis are: pH level (which is a measure of the hydrogen ion concentration of blood to specify the acidity or alkalinity), as an indicator of respiratory acidosis; Base Deficit of extra-cellular fluid level and Base Excess (BE) (which is the measure of the total concentration of blood buffer base that indicates metabolic acidosis or compensated respiratory alkalosis). In addition to other parameters such as the PCO2 (partial pressure of carbon dioxide can reflect the hypoxic state of the foetus) and the Apgar scores (which shows the foetal physical activity within a specific time interval after birth). The provided data was an open-source partum clinical data obtained by Physionet, including both hypoxic cases and normal cases. Six well known machine learning classifier are used for the classification; each model was presented with a set of selected features derived from the clinical data. Classifier evaluation is performed using the receiver operating characteristic curve analysis, area under the curve plots, as well as confusion matrix. The simulation results indicate that machine learning classifiers provide good results in diagnosis of foetal hypoxia, in addition to acceptable results of different combinations of parameters to differentiate the cases

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Are advanced methods necessary to improve infant fNIRS data analysis? An assessment of baseline-corrected averaging, general linear model (GLM) and multivariate pattern analysis (MVPA) based approaches

    Get PDF
    In the last decade, fNIRS has provided a non-invasive method to investigate neural activation in developmental populations. Despite its increasing use in developmental cognitive neuroscience, there is little consistency or consensus on how to pre-process and analyse infant fNIRS data. With this registered report, we investigated the feasibility of applying more advanced statistical analyses to infant fNIRS data and compared the most commonly used baseline-corrected averaging, General Linear Model (GLM)-based univariate, and Multivariate Pattern Analysis (MVPA) approaches, to show how the conclusions one would draw based on these different analysis approaches converge or differ. The different analysis methods were tested using a face inversion paradigm where changes in brain activation in response to upright and inverted face stimuli were measured in thirty 4-to-6-month-old infants. By including more standard approaches together with recent machine learning techniques, we aim to inform the fNIRS community on alternative ways to analyse infant fNIRS datasets
    corecore