6,944 research outputs found

    Predicting diabetes-related hospitalizations based on electronic health records

    Full text link
    OBJECTIVE: To derive a predictive model to identify patients likely to be hospitalized during the following year due to complications attributed to Type II diabetes. METHODS: A variety of supervised machine learning classification methods were tested and a new method that discovers hidden patient clusters in the positive class (hospitalized) was developed while, at the same time, sparse linear support vector machine classifiers were derived to separate positive samples from the negative ones (non-hospitalized). The convergence of the new method was established and theoretical guarantees were proved on how the classifiers it produces generalize to a test set not seen during training. RESULTS: The methods were tested on a large set of patients from the Boston Medical Center - the largest safety net hospital in New England. It is found that our new joint clustering/classification method achieves an accuracy of 89% (measured in terms of area under the ROC Curve) and yields informative clusters which can help interpret the classification results, thus increasing the trust of physicians to the algorithmic output and providing some guidance towards preventive measures. While it is possible to increase accuracy to 92% with other methods, this comes with increased computational cost and lack of interpretability. The analysis shows that even a modest probability of preventive actions being effective (more than 19%) suffices to generate significant hospital care savings. CONCLUSIONS: Predictive models are proposed that can help avert hospitalizations, improve health outcomes and drastically reduce hospital expenditures. The scope for savings is significant as it has been estimated that in the USA alone, about $5.8 billion are spent each year on diabetes-related hospitalizations that could be prevented.Accepted manuscrip

    Detection and prediction problems with applications in personalized health care

    Full text link
    The United States health-care system is considered to be unsustainable due to its unbearably high cost. Many of the resources are spent on acute conditions rather than aiming at preventing them. Preventive medicine methods, therefore, are viewed as a potential remedy since they can help reduce the occurrence of acute health episodes. The work in this dissertation tackles two distinct problems related to the prevention of acute disease. Specifically, we consider: (1) early detection of incorrect or abnormal postures of the human body and (2) the prediction of hospitalization due to heart related diseases. The solution to the former problem could be used to prevent people from unexpected injuries or alert caregivers in the event of a fall. The latter study could possibly help improve health outcomes and save considerable costs due to preventable hospitalizations. For body posture detection, we place wireless sensor nodes on different parts of the human body and use the pairwise measurements of signal strength corresponding to all sensor transmitter/receiver pairs to estimate body posture. We develop a composite hypothesis testing approach which uses a Generalized Likelihood Test (GLT) as the decision rule. The GLT distinguishes between a set of probability density function (pdf) families constructed using a custom pdf interpolation technique. The GLT is compared with the simple Likelihood Test and Multiple Support Vector Machines. The measurements from the wireless sensor nodes are highly variable and these methods have different degrees of adaptability to this variability. Besides, these methods also handle multiple observations differently. Our analysis and experimental results suggest that GLT is more accurate and suitable for the problem. For hospitalization prediction, our objective is to explore the possibility of effectively predicting heart-related hospitalizations based on the available medical history of the patients. We extensively explored the ways of extracting information from patients' Electronic Health Records (EHRs) and organizing the information in a uniform way across all patients. We applied various machine learning algorithms including Support Vector Machines, AdaBoost with Trees, and Logistic Regression adapted to the problem at hand. We also developed a new classifier based on a variant of the likelihood ratio test. The new classifier has a classification performance competitive with those more complex alternatives, but has the additional advantage of producing results that are more interpretable. Following this direction of increasing interpretability, which is important in the medical setting, we designed a new method that discovers hidden clusters and, at the same time, makes decisions. This new method introduces an alternating clustering and classification approach with guaranteed convergence and explicit performance bounds. Experimental results with actual EHRs from the Boston Medical Center demonstrate prediction rate of 82% under 30% false alarm rate, which could lead to considerable savings when used in practice

    Centralized and distributed learning methods for predictive health analytics

    Get PDF
    The U.S. health care system is considered costly and highly inefficient, devoting substantial resources to the treatment of acute conditions in a hospital setting rather than focusing on prevention and keeping patients out of the hospital. The potential for cost savings is large; in the U.S. more than $30 billion are spent each year on hospitalizations deemed preventable, 31% of which is attributed to heart diseases and 20% to diabetes. Motivated by this, our work focuses on developing centralized and distributed learning methods to predict future heart- or diabetes- related hospitalizations based on patient Electronic Health Records (EHRs). We explore a variety of supervised classification methods and we present a novel likelihood ratio based method (K-LRT) that predicts hospitalizations and offers interpretability by identifying the K most significant features that lead to a positive prediction for each patient. Next, assuming that the positive class consists of multiple clusters (hospitalized patients due to different reasons), while the negative class is drawn from a single cluster (non-hospitalized patients healthy in every aspect), we present an alternating optimization approach, which jointly discovers the clusters in the positive class and optimizes the classifiers that separate each positive cluster from the negative samples. We establish the convergence of the method and characterize its VC dimension. Last, we develop a decentralized cluster Primal-Dual Splitting (cPDS) method for large-scale problems, that is computationally efficient and privacy-aware. Such a distributed learning scheme is relevant for multi-institutional collaborations or peer-to-peer applications, allowing the agents to collaborate, while keeping every participant's data private. cPDS is proved to have an improved convergence rate compared to existing centralized and decentralized methods. We test all methods on real EHR data from the Boston Medical Center and compare results in terms of prediction accuracy and interpretability

    Early hospital mortality prediction using vital signals

    Full text link
    Early hospital mortality prediction is critical as intensivists strive to make efficient medical decisions about the severely ill patients staying in intensive care units. As a result, various methods have been developed to address this problem based on clinical records. However, some of the laboratory test results are time-consuming and need to be processed. In this paper, we propose a novel method to predict mortality using features extracted from the heart signals of patients within the first hour of ICU admission. In order to predict the risk, quantitative features have been computed based on the heart rate signals of ICU patients. Each signal is described in terms of 12 statistical and signal-based features. The extracted features are fed into eight classifiers: decision tree, linear discriminant, logistic regression, support vector machine (SVM), random forest, boosted trees, Gaussian SVM, and K-nearest neighborhood (K-NN). To derive insight into the performance of the proposed method, several experiments have been conducted using the well-known clinical dataset named Medical Information Mart for Intensive Care III (MIMIC-III). The experimental results demonstrate the capability of the proposed method in terms of precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC). The decision tree classifier satisfies both accuracy and interpretability better than the other classifiers, producing an F1-score and AUC equal to 0.91 and 0.93, respectively. It indicates that heart rate signals can be used for predicting mortality in patients in the ICU, achieving a comparable performance with existing predictions that rely on high dimensional features from clinical records which need to be processed and may contain missing information.Comment: 11 pages, 5 figures, preprint of accepted paper in IEEE&ACM CHASE 2018 and published in Smart Health journa

    Contributions from computational intelligence to healthcare data processing

    Get PDF
    80 p.The increasing ability to gather, store and process health care information, through the electronic health records and improved communication methods opens the door for new applications intended to improve health care in many different ways. Crucial to this evolution is the development of new computational intelligence tools, related to machine learning and statistics. In this thesis we have dealt with two case studies involving health data. The first is the monitoring of children with respiratory diseases in the pediatric intensive care unit of a hospital. The alarm detection is stated as a classification problem predicting the triage selected by the nurse or medical doctor. The second is the prediction of readmissions leading to hospitalization in an emergency department of a hospital. Both problems have great impact in economic and personal well being. We have tackled them with a rigorous methodological approach, obtaining results that may lead to a real life implementation. We have taken special care in the treatment of the data imbalance. Finally we make propositions to bring these techniques to the clinical environment

    Mining Themes in Clinical Notes to Identify Phenotypes and to Predict Length of Stay in Patients admitted with Heart Failure

    Get PDF
    Heart failure is a syndrome which occurs when the heart is not able to pump blood and oxygen to support other organs in the body. Identifying the underlying themes in the diagnostic codes and procedure reports of patients admitted for heart failure could reveal the clinical phenotypes associated with heart failure and to group patients based on their similar characteristics which could also help in predicting patient outcomes like length of stay. These clinical phenotypes usually have a probabilistic latent structure and hence, as there has been no previous work on identifying phenotypes in clinical notes of heart failure patients using a probabilistic framework and to predict length of stay of these patients using data-driven artificial intelligence-based methods, we apply natural language processing technique, topic modeling, to identify the themes present in diagnostic codes and in procedure reports of 1,200 patients admitted for heart failure at the University of Illinois Hospital and Health Sciences System (UI Health). Topic modeling identified twelve themes each in diagnostic codes and procedure reports which revealed information about different phenotypes related to various perspectives about heart failure, to study patients\u27 profiles and to discover new relationships among medical concepts. Each theme had a set of keywords and each clinical note was labeled with two themes - one corresponding to its diagnostic code and the other corresponding to its procedure reports along with their percentage contribution. We used these themes and their percentage contribution to predict length of stay. We found that the themes discovered in diagnostic codes and procedure reports using topic modeling together were able to predict length of stay of the patients with an accuracy of 61.1% and an Area under the Receiver Operating Characteristic Curve (ROC AUC) value of 0.828

    Modeling Stroke Diagnosis with the Use of Intelligent Techniques

    Get PDF
    The purpose of this work is to test the efficiency of specific intelligent classification algorithms when dealing with the domain of stroke medical diagnosis. The dataset consists of patient records of the ”Acute Stroke Unit”, Alexandra Hospital, Athens, Greece, describing patients suffering one of 5 different stroke types diagnosed by 127 diagnostic attributes / symptoms collected during the first hours of the emergency stroke situation as well as during the hospitalization and recovery phase of the patients. Prior to the application of the intelligent classifier the dimensionality of the dataset is further reduced using a variety of classic and state of the art dimensionality reductions techniques so as to capture the intrinsic dimensionality of the data. The results obtained indicate that the proposed methodology achieves prediction accuracy levels that are comparable to those obtained by intelligent classifiers trained on the original feature space
    corecore