2,104 research outputs found

    Analytical and numerical modelling of elastic properties of isotropic and anisotropic rocks and their stress dependencies

    Get PDF
    The research is focused on analytical and numerical modelling of elastic properties of rocks and their stress dependencies. A number of approaches to model and simulate stress dependencies of elastic properties of rocks were tested. Proposed models were, at first, tested on isotropic rocks and then further developed to anisotropic case and applied to shales. The study was supported by the numerical simulations using Finite Element Method on realistic 3D models reconstructed from computer tomography images

    Modeling the elastic characteristics of overpressure due to thermal maturation in organic shales

    Get PDF
    Modeling the overpressure of organic shales caused by thermal maturation and its elastic responses is crucial for geophysical characterization of source rocks and unconventional shale reservoirs. Thermal maturation involves the generation of excess fluid contents (oil and gas) and can cause the overpressure if an organic shale preserves the produced fluids partly or wholly. The solid organic matter (e.g., kerogen or solid bitumen) with the potential of generating hydrocarbon presents two types of morphology in organic shales: scattered patches as pore-fillings and continuous network as load-bearings. According to the kerogen morphology, two bulk volume models are devised to simulate the elasticity of organic shales using respective rock-physics modeling schemes. The rock physics modeling combined with the density and compressibility of pore-fillings are demonstrated to effectively capture the excess pore pressure characteristics due to thermal maturation in organic shales. The basic principle of solving the overpressure is that the pore space volume equals the total volume of all components within the pores before and after the maturation. According to the modeling results, the elastic characteristics of overpressure due to thermal maturation reveal a decrease in velocity and a slight decrease in density. Besides, for an organic shale with a relatively rigid framework, it tends to yield higher overpressure than a shale with a relatively compliant framework. With proper calibration, the modeling strategy shows its potential in quantitatively interpreting the well-log data of organic shale formation within the thermal maturation window.Document Type: Original articleCited as: Qin, X., Zhao, L., Zhu, J., Han, D. Modeling the elastic characteristics of overpressure due to thermal maturation in organic shales. Advances in Geo-Energy Research, 2023, 10(3): 174-188. https://doi.org/10.46690/ager.2023.12.0

    On probabilistic aspects in the dynamic degradation of ductile materials

    Get PDF
    Dynamic loadings produce high stress waves leading to the spallation of ductile materials such as aluminum, copper, magnesium or tantalum. The main mechanism used herein to explain the change of the number of cavities with the stress rate is nucleation inhibition, as induced by the growth of already nucleated cavities. The dependence of the spall strength and critical time with the loading rate is investigated in the framework of a probabilistic model. The present approach, which explains previous experimental findings on the strain-rate dependence of the spall strength, is applied to analyze experimental data on tantalum.Comment: 28 pages, 13 figures, 3 table

    Improved rock physical models for the integration of core, log and seismic data

    Get PDF

    Estimation of Elasticity of Porous Rock Based on Mineral Composition and Microstructure

    Get PDF
    Estimation of elastic parameters of porous rock like the compressibility of sandstone is scientifically important and yet an open issue. This study illustrates the estimation of the elastic compressibility of sandstone (ECS) based on the assumption that the ECS is determined closely by the mineral composition and microstructures. In this study, 37 samples are collected to evaluate the estimations of the ECS obtained by different methods. The regression analysis is first implemented using the 37 samples. The results show that ECS exhibits linear relations with the rock minerals, pores, and applied compressive stress. Then the support vector machine (SVM) optimized by the particle swarm optimization algorithm (PSO) is examined to generate estimations of the ECS based on the mineral composition and microstructures. The SVM is trained with 30 samples to search for optimal parameters using the PSO, and thus the estimation model is established. Afterwards, this model is validated to give predictions of the left 7 samples. By comparison with the regression methods, the proposed strategy, that is, the PSO optimized SVM, performs much better on the training samples and shows a good capability in generating estimations of the ECS of the 7 testing samples based on the mineral composition and microstructures

    Numerical Modeling in Civil and Mining Geotechnical Engineering

    Get PDF
    This Special Issue (SI) collects fourteen articles published by leading scholars of numerical modeling in civil and mining geotechnical engineering. There is a good balance in the number of published articles, with seven in civil engineering and seven in mining engineering. The software used in the numerical modeling of these article varies from numerical codes based on continuum mechanics to those based on distinct element methods or mesh-free methods. The studied materials vary from rock, soil, and backfill to tailings. The investigations vary from mechanical behavior to hydraulic and thermal responses of infrastructures varying from pile foundations to tailings dams and underground openings. The SI thus collected a diversity of articles, reflecting the state-of-the-art of numerical modeling applied in civil and mining geotechnical engineering

    Modelling the wide-band laboratory response of rock samples to fluid and pressure changes

    Get PDF

    Time-lapse seismic monitoring of subsurface fluid flow

    Get PDF
    Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic changes of reservoir properties, and therefore has strong potential for improving reservoir management. However, the response of a reservoir depends on many parameters and can be diffcult to understand and predict. Numerical modeling results integrating streamline fluid flow simulation, rock physics, and ray-Born seismic modeling address some of these problems. Calculations show that the sensitivity of amplitude changes to porosity depend on the type of sediment comprising the reservoir. For consolidated rock, high-porosity models show larger amplitude changes than low porosity models. However, in an unconsolidated formation, there is less consistent correlation between amplitude and porosity. The rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in seismic response associated with poorly known values of reservoir parameters such as permeability and dry bulk modulus. Results show that for permeability, the maximum uncertainties in time-lapse seismic signals occur at the water front, where saturation is most variable. For the dry bulk-modulus, the uncertainty is greatest near the injection well, where the maximum saturation changes occur. Time-lapse seismic methods can also be applied to monitor CO2 sequestration. Simulations show that since the acoustic properties of CO2 are very different from those of hydrocarbons and water, it is possible to image CO2 saturation using seismic monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection are larger than liquid CO2 injection. Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were acquired at different times, and the numerical models provide important insights to understand changes in the reservoir. 4D seismic differences after cross-equalization show that amplitude dimming occurs in the northeast and brightening occurs in the southwest part of the field. Our forward model, which integrates production data, petrophysicals, and seismic wave propagation simulation, shows that the amplitude dimming and brightening can be explained by pore pressure drops and gas invasion, respectively
    • …
    corecore