2,363 research outputs found

    Application of miRNA-seq in neuropsychiatry: A methodological perspective

    Get PDF
    MiRNAs are emerging as key molecules to study neuropsychiatric diseases. However, despite the large number of methodologies and software for miRNA-seq analyses, there is little supporting literature for researchers in this area. This review focuses on evaluating how miRNA-seq has been used to study neuropsychiatric diseases to date, analyzing both the main findings discovered and the bioinformatics workflows and tools used from a methodological perspective. The objective of this review is two-fold: first, to evaluate current miRNA-seq procedures used in neuropsychiatry; and second, to offer comprehensive information that can serve as a guide to new researchers in bioinformatics. After conducting a systematic search (from 2016 to June 30, 2020) of articles using miRNA-seq in neuropsychiatry, we have seen that it has already been used for different types of studies in three main categories: diagnosis, prognosis, and mechanism. We carefully analyzed the bioinformatics workflows of each study, observing a high degree of variability with respect to the tools and methods used and several methodological complexities that are identified and discussed in this reviewInstituto de Salud Carlos III | Ref. PI18/01311Ministerio de Economía y Competitividad | Ref. RYC2014-15246Xunta de Galicia | Ref. ED431C2018/55-GR

    PANDA: prioritization of autism-genes using network-based deep-learning approach

    Get PDF
    Autism is a neuropsychiatric disorder characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Autism is predominantly heritable, but the underlying genetic associations are still largely unknown. Understanding the genetic background of complex diseases, such as autism, plays an essential role in the promising precision medicine. The evaluation of candidate genes, however, requires time-consuming and expensive experiments given the large number of possibilities. Thus, computational methods have seen increasing applications in predicting gene-disease associations. In this thesis, we proposed a bioinformatics framework, Prioritization of Autism-genes using Network-based Deep-learning Approach (PANDA). Our approach aims to identify autism-genes across the human genome based on patterns of gene-gene interactions and topological similarity of genes in the interaction network. PANDA trains a graph deep learning classifier using the input of the human molecular interaction network (HMIN) and predicts and ranks the probability of autism association of every node (gene) in the network. PANDA was able to achieve a high classification accuracy of 89%, outperforming three other commonly used machine learning algorithms. Moreover, the gene prioritization ranking list produced by PANDA was evaluated and validated using a large-scale independent exome-sequencing study. The top decile (top 10%) of PANDA ranked genes were found significantly enriched for autism association

    The Pharmacoepigenomics Informatics Pipeline and H-GREEN Hi-C Compiler: Discovering Pharmacogenomic Variants and Pathways with the Epigenome and Spatial Genome

    Full text link
    Over the last decade, biomedical science has been transformed by the epigenome and spatial genome, but the discipline of pharmacogenomics, the study of the genetic underpinnings of pharmacological phenotypes like drug response and adverse events, has not. Scientists have begun to use omics atlases of increasing depth, and inferences relating to the bidirectional causal relationship between the spatial epigenome and gene expression, as a foundational underpinning for genetics research. The epigenome and spatial genome are increasingly used to discover causative regulatory variants in the significance regions of genome-wide association studies, for the discovery of the biological mechanisms underlying these phenotypes and the design of genetic tests to predict them. Such variants often have more predictive power than coding variants, but in the area of pharmacogenomics, such advances have been radically underapplied. The majority of pharmacogenomics tests are designed manually on the basis of mechanistic work with coding variants in candidate genes, and where genome wide approaches are used, they are typically not interpreted with the epigenome. This work describes a series of analyses of pharmacogenomics association studies with the tools and datasets of the epigenome and spatial genome, undertaken with the intent of discovering causative regulatory variants to enable new genetic tests. It describes the potent regulatory variants discovered thereby to have a putative causative and predictive role in a number of medically important phenotypes, including analgesia and the treatment of depression, bipolar disorder, and traumatic brain injury with opiates, anxiolytics, antidepressants, lithium, and valproate, and in particular the tendency for such variants to cluster into spatially interacting, conceptually unified pathways which offer mechanistic insight into these phenotypes. It describes the Pharmacoepigenomics Informatics Pipeline (PIP), an integrative multiple omics variant discovery pipeline designed to make this kind of analysis easier and cheaper to perform, more reproducible, and amenable to the addition of advanced features. It described the successes of the PIP in rediscovering manually discovered gene networks for lithium response, as well as discovering a previously unknown genetic basis for warfarin response in anticoagulation therapy. It describes the H-GREEN Hi-C compiler, which was designed to analyze spatial genome data and discover the distant target genes of such regulatory variants, and its success in discovering spatial contacts not detectable by preceding methods and using them to build spatial contact networks that unite disparate TADs with phenotypic relationships. It describes a potential featureset of a future pipeline, using the latest epigenome research and the lessons of the previous pipeline. It describes my thinking about how to use the output of a multiple omics variant pipeline to design genetic tests that also incorporate clinical data. And it concludes by describing a long term vision for a comprehensive pharmacophenomic atlas, to be constructed by applying a variant pipeline and machine learning test design system, such as is described, to thousands of phenotypes in parallel. Scientists struggled to assay genotypes for the better part of a century, and in the last twenty years, succeeded. The struggle to predict phenotypes on the basis of the genotypes we assay remains ongoing. The use of multiple omics variant pipelines and machine learning models with omics atlases, genetic association, and medical records data will be an increasingly significant part of that struggle for the foreseeable future.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145835/1/ariallyn_1.pd

    Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.</p

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.</p
    corecore