33,930 research outputs found

    Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model

    Full text link
    This paper presents the upgrading of a method for predicting short-term building energy consumption that was previously developed by the authors (EUs method). The upgrade uses a time temperature curve (TTC) forecast model. The EUs method involves the use of artificial neural networks (ANNs) for predicting each independent process end-uses (EUs). End-uses consume energy with a specific behaviour in function of certain external variables. The EUs method obtains the total consumption by the addition of the forecasted end-uses. The inputs required for this method are the parameters that may affect consumption, such as temperature, type of day, etc. Historical data of the total consumption and the consumption of each end-use are also required. A model for prediction of the time temperature curve has been developed for the new forecast method (TEUs method). The temperature at each moment of the day is obtained using the prediction of the maximum and minimum daytime temperature. This provides various benefits when selecting the training days and in the training and forecasting phases, thus improving the relationship between expected consumption and temperatures. The method has been tested and validated with the consumption forecast of the Universitat Politècnica de València for an entire year.This research work has been possible with the support of the Universitat Politecnica de Valencia (Spain) with grant #CE 19990032.Roldán Blay, C.; Escrivá-Escrivá, G.; Álvarez Bel, CM.; Roldán Porta, C.; Rodriguez-Garcia, J. (2013). Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model. Energy and Buildings. 60:38-46. https://doi.org/10.1016/j.enbuild.2012.12.009S38466

    Energy Efficiency Prediction using Artificial Neural Network

    Get PDF
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a dataset for building energy performance. The main factors for input variables are: relative compactness, roof area, overall height, surface area, glazing are a, wall area, glazing area distribution of a building, orientation, and the output variables: heating and cooling loads of the building. The dataset used for training are the data published in the literature for various 768 residential buildings. The model was trained and validated, most important factors affecting heating load and cooling load are identified, and the accuracy for the validation was 99.60%

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore