1,811 research outputs found

    Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water

    Full text link
    The brain-blood partition coefficient (log BB ) is a determining factor for the efficacy of central nervous system acting drugs. Since large-scale experimental determination of log BB is unfeasible, alternative evaluation methods based on theoretical models are desirable. Toward this direction, we propose a model that correlates log BB with physically significant descriptors for 76 structurally diverse molecules. We employ Monte Carlo simulations of the compounds in water to calculate such properties as the solvent-accessible surface area ( SASA ), the number of hydrogen bond donors and acceptors, the solute dipole, and the hydrophilic, hydrophobic and amphiphilic components of SASA . The physically significant descriptors are identified and a quantitative structure-prediction relationship is constructed that predicts log BB . This work demonstrates that computer simulations can be employed in a semi-empirical framework to build predictive QSPRs that shed light on the physical mechanism of biomolecular phenomena.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42966/1/10822_2004_Article_354911.pd

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog

    PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals

    Get PDF
    International audienceGeneric PBPK models, applicable to a large number of substances, coupled to parameter databases and QSAR modules, are now available for predictive modelling of inter-individual variability in the absorption, distribution, metabolism and excretion of environmental chemicals. When needed, Markov chain Monte Carlo methods and multilevel population models can be jointly used for a Bayesian calibration of a PBPK model, to improve our understanding of the determinants of population heterogeneity and differential susceptibility. This article reviews those developments and illustrates them with recent applications to environmentally relevant questions

    Conductance of porous media depends on external electric fields

    Get PDF
    In obstacle-filled media, such as extracellular or intracellular lumen of brain tissue, effective ion diffusion permeability is a key determinant of electrogenic reactions. Although this diffusion permeability is thought to depend entirely on structural features of the medium, such as porosity and tortuosity, brain tissue shows prominent non-ohmic properties, the origins of which remain poorly understood. Here, we explore Monte Carlo simulations of ion diffusion in a space filled with overlapping spheres, to predict that diffusion permeability of such media decreases with stronger external electric fields. This dependence increases with lower medium porosity while decreasing with radial (2D or 3D) compared to homogenous (1D) fields. We test our predictions empirically in an electrolyte chamber filled with microscopic glass spheres and find good correspondence with our predictions. A theoretical insight relates this phenomenon to a disproportionately increased dwell time of diffusing ions at potential barriers (or traps) representing geometric obstacles, when the field strength increases. The dependence of medium ion-diffusion permeability on electric field could be important for understanding conductivity properties of porous materials, in particular for the accurate interpretation of electric activity recordings in brain tissue

    In Silico Resources to Assist in the Development and Evaluation of Physiologically-Based Kinetic Models

    Get PDF
    Since their inception in pharmaceutical applications, physiologically-based kinetic (PBK) models are increasingly being used across a range of sectors, such as safety assessment of cosmetics, food additives, consumer goods, pesticides and other chemicals. Such models can be used to construct organ-level concentration-time profiles of xenobiotics. These models are essential in determining the overall internal exposure to a chemical and hence its ability to elicit a biological response. There are a multitude of in silico resources available to assist in the construction and evaluation of PBK models. An overview of these resources is presented herein, encompassing all attributes required for PBK modelling. These include predictive tools and databases for physico-chemical properties and absorption, distribution, metabolism and elimination (ADME) related properties. Data sources for existing PBK models, bespoke PBK software and generic software that can assist in model development are also identified. On-going efforts to harmonise approaches to PBK model construction, evaluation and reporting that would help increase the uptake and acceptance of these models are also discussed

    Développement de modèles prédictifs de la toxicocinétique de substances organiques

    Full text link
    Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain.Physiologically-based pharmacokinetic (PBPK) models simulate the internal dose metrics of chemicals based on species-specific and chemical-specific parameters. The existing quantitative structure-property relationships (QSPRs) allow to estimate the chemical-specific parameters (partition coefficients (PCs) and metabolic constants) but their applicability is limited by their lack of consideration of variability in input parameters and their restricted application domain (i.e., substances containing CH3, CH2, CH, C, C=C, H, Cl, F, Br, benzene ring and H in benzene ring). The objective of this study was to develop new knowledge and tools to increase the applicability domain of QSPR-PBPK models for predicting the inhalation toxicokinetics of organic compounds in humans. First, a unified mechanistic algorithm was developed from existing models to predict macro (tissue and blood) and micro (cell and biological fluid) level PCs of 142 drugs and environmental pollutants on the basis of tissue and blood composition along with physicochemical properties. The resulting algorithm was applied to compute the tissue:blood, tissue:plasma and tissue:air PCs in rat muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, ethers, aliphatic and aromatic hydrocarbons. Then, a quantitative property-property relationship (QPPR) model was developed for the in vivo rat intrinsic clearance (CLint) (calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the Km (μM)) of CYP2E1 substrates (n = 26) as a function of n-octanol:water PC, blood:water PC, and ionization potential). The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals were then integrated within a human PBPK model. Subsequently, the PC algorithm and QPPR for CLint were integrated along with a QSPR model for the hemoglobin:water and oil:air PCs to simulate the inhalation pharmacokinetics and cellular dosimetry of volatile organic compounds (VOCs) (benzene, 1,2-dichloroethane, dichloromethane, m-xylene, toluene, styrene, 1,1,1-trichloroethane and 1,2,4 trimethylbenzene) using a PBPK model for rats. Finally, the variability in the tissue and blood composition parameters of the PC algorithm for rat tissue:air and human blood:air PCs was characterized by performing Markov chain Monte Carlo (MCMC) simulations. The resulting distributions were used for conducting Monte Carlo simulations to predict tissue:blood and blood:air PCs for VOCs. The distributions of PCs, along with distributions of physiological parameters and CYP2E1 content, were then incorporated within a PBPK model, to characterize the human variability of the blood toxicokinetics of four VOCs (benzene, chloroform, styrene and trichloroethylene) using Monte Carlo simulations. Overall, the quantitative approaches for PCs and CLint implemented in this study allow the use of generic molecular descriptors rather than specific molecular fragments to predict the pharmacokinetics of organic substances in humans. In this process, the current study has, for the first time, characterized the variability of the biological input parameters of the PC algorithms to expand the ability of PBPK models to predict the population distributions of the internal dose metrics of organic substances prior to testing in animals or humans
    • …
    corecore