3,269 research outputs found

    Feedlot performance and carcass traits of feeder cattle sorted by hip height and ultrasound determined backfat

    Get PDF
    Call number: LD2668 .T4 ASI 1989 H46Master of ScienceAnimal Sciences and Industr

    Farmers' Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors

    Get PDF
    Simple Summary Smart farming is a concept of agricultural innovation that combines technological, social, economic and institutional changes. It employs novel practices of technologies and farm management at various levels (specifically with a focus on the system perspective) and scales of agricultural production, helping the industry meet the challenges stemming from immense food production demands, environmental impact mitigation and reductions in the workforce. Precision Livestock Farming (PLF) systems will help the industry meet consumer expectations for more environmentally and welfare-friendly production. However, the overwhelming majority of these new technologies originate from outside the farm sector. The adoption of new technologies is affected by the development, dissemination and application of new methodologies, technologies and regulations at the farm level, as well as quantified business models. Subsequently, the utilization of PLF in the pig and especially the poultry sectors should be advocated (the latter due to the foreseen increase in meat production). Therefore, more significant research efforts than those that currently exist are mainly required in the poultry industry. The investigation of farmers' attitudes and concerns about the acceptance of technological solutions in the livestock sector should be integrally incorporated into any technological development.Abstract More efficient livestock production systems are necessary, considering that only 41% of global meat demand will be met by 2050. Moreover, the COVID-19 pandemic crisis has clearly illustrated the necessity of building sustainable and stable agri-food systems. Precision Livestock Farming (PLF) offers the continuous capacity of agriculture to contribute to overall human and animal welfare by providing sufficient goods and services through the application of technical innovations like digitalization. However, adopting new technologies is a challenging issue for farmers, extension services, agri-business and policymakers. We present a review of operational concepts and technological solutions in the pig and poultry sectors, as reflected in 41 and 16 European projects from the last decade, respectively. The European trend of increasing broiler-meat production, which is soon to outpace pork, stresses the need for more outstanding research efforts in the poultry industry. We further present a review of farmers' attitudes and obstacles to the acceptance of technological solutions in the pig and poultry sectors using examples and lessons learned from recent European projects. Despite the low resonance at the research level, the investigation of farmers' attitudes and concerns regarding the acceptance of technological solutions in the livestock sector should be incorporated into any technological development

    On the holobiont 'predictome' of immunocompetence in pigs

    Get PDF
    Gut microbial composition plays an important role in numerous traits, including immune response. Integration of host genomic information with microbiome data is a natural step in the prediction of complex traits, although methods to optimize this are still largely unexplored. In this paper, we assess the impact of different modelling strategies on the predictive capacity for six porcine immunocompetence traits when both genotype and microbiota data are available. We used phenotypic data on six immunity traits and the relative abundance of gut bacterial communities on 400 Duroc pigs that were genotyped for 70 k SNPs. We compared the predictive accuracy, defined as the correlation between predicted and observed phenotypes, of a wide catalogue of models: reproducing kernel Hilbert space (RKHS), Bayes C, and an ensemble method, using a range of priors and microbial clustering strategies. Combined (holobiont) models that include both genotype and microbiome data were compared with partial models that use one source of variation only. Overall, holobiont models performed better than partial models. Host genotype was especially relevant for predicting adaptive immunity traits (i.e., concentration of immunoglobulins M and G), whereas microbial composition was important for predicting innate immunity traits (i.e., concentration of haptoglobin and C-reactive protein and lymphocyte phagocytic capacity). None of the models was uniformly best across all traits. We observed a greater variability in predictive accuracies across models when microbiability (the variance explained by the microbiome) was high. Clustering microbial abundances did not necessarily increase predictive accuracy. Gut microbiota information is useful for predicting immunocompetence traits, especially those related to innate immunity. Modelling microbiome abundances deserves special attention when microbiability is high. Clustering microbial data for prediction is not recommended by default. The online version contains supplementary material available at 10.1186/s12711-023-00803-4

    On the holobiont ‘predictome’ of immunocompetence in pigs

    Get PDF
    Background Gut microbial composition plays an important role in numerous traits, including immune response. Integration of host genomic information with microbiome data is a natural step in the prediction of complex traits, although methods to optimize this are still largely unexplored. In this paper, we assess the impact of different modelling strategies on the predictive capacity for six porcine immunocompetence traits when both genotype and microbiota data are available. Methods We used phenotypic data on six immunity traits and the relative abundance of gut bacterial communities on 400 Duroc pigs that were genotyped for 70 k SNPs. We compared the predictive accuracy, defined as the correlation between predicted and observed phenotypes, of a wide catalogue of models: reproducing kernel Hilbert space (RKHS), Bayes C, and an ensemble method, using a range of priors and microbial clustering strategies. Combined (holobiont) models that include both genotype and microbiome data were compared with partial models that use one source of variation only. Results Overall, holobiont models performed better than partial models. Host genotype was especially relevant for predicting adaptive immunity traits (i.e., concentration of immunoglobulins M and G), whereas microbial composition was important for predicting innate immunity traits (i.e., concentration of haptoglobin and C-reactive protein and lymphocyte phagocytic capacity). None of the models was uniformly best across all traits. We observed a greater variability in predictive accuracies across models when microbiability (the variance explained by the microbiome) was high. Clustering microbial abundances did not necessarily increase predictive accuracy. Conclusions Gut microbiota information is useful for predicting immunocompetence traits, especially those related to innate immunity. Modelling microbiome abundances deserves special attention when microbiability is high. Clustering microbial data for prediction is not recommended by default.info:eu-repo/semantics/publishedVersio
    corecore