314 research outputs found

    Cross-Section Bead Image Prediction in Laser Keyhole Welding of AISI 1020 Steel Using Deep Learning Architectures

    Get PDF
    A deep learning model was applied for predicting a cross-sectional bead image from laser welding process parameters. The proposed model consists of two successive generators. The first generator produces a weld bead segmentation map from laser intensity and interaction time, which is subsequently translated into an optical microscopic (OM) image by the second generator. Both generators exhibit an encoder & x2013;decoder structure based on a convolutional neural network (CNN). In the second generator, a conditional generative adversarial network (cGAN) was additionally employed with multiscale discriminators and residual blocks, considering the size of the OM image. For a training dataset, laser welding experiments with AISI 1020 steel were conducted on a large process window using a 2 KW fiber laser, and a total of 39 process conditions were used for the training. High-resolution OM images were successfully generated, and the predicted bead shapes were reasonably accurate (R-Squared: 89.0 & x0025; for penetration depth, 93.6 & x0025; for weld bead area)

    Optimization of different welding processes using statistical and numerical approaches – A reference guide

    Get PDF
    Welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld-bead geometry, mechanical properties, and distortion. Generally, all welding processes are used with the aim of obtaining a welded joint with the desired weld-bead parameters, excellent mechanical properties with minimum distortion. Nowadays, application of design of experiment (DoE), evolutionary algorithms and computational network are widely used to develop a mathematical relationship between the welding process input parameters and the output variables of the weld joint in order to determine the welding input parameters that lead to the desired weld quality. A comprehensive literature review of the application of these methods in the area of welding has been introduced herein. This review was classified according to the output features of the weld, i.e. bead geometry and mechanical properties of the welds

    Modelling of the Welding Process using Bayesian Network and Applying Data Collected from Several Sources

    Get PDF

    Identification of key GMAW fillet weld parameters and interactions using artificial neural networks

    Get PDF
    Fillet welds are one of the most commonly used weld joints but one of the most difficult to weld consistently. This paper presents a technique using Artificial Neural Networks (ANN) to identify the key Gas Metal Arc Welding (GMAW) fillet weld parameters and interactions that impact on the resultant geometry, when using a metal cored wire. The input parameters to the model were current, voltage, travel speed; gun angle and travel angle and the outputs of the model were penetration and leg length. The model was in good agreement with experimental data collected and the subsequent sensitivity analysis showed that current was the most influential parameter in determining penetration and that travel speed, followed closely by current and voltage were most influential in determining the leg length. The paper also concludes that a ‘pushing’ travel angle is preferred when trying to control the resultant geometry mainly because both the resultant leg length and penetration appear to be less sensitive to changes in heat input
    corecore