475 research outputs found

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Biomedical and Human Factors Requirements for a Manned Earth Orbiting Station

    Get PDF
    This report is the result of a study conducted by Republic Aviation Corporation in conjunction with Spacelabs, Inc.,in a team effort in which Republic Aviation Corporation was prime contractor. In order to determine the realistic engineering design requirements associated with the medical and human factors problems of a manned space station, an interdisciplinary team of personnel from the Research and Space Divisions was organized. This team included engineers, physicians, physiologists, psychologists, and physicists. Recognizing that the value of the study is dependent upon medical judgments as well as more quantifiable factors (such as design parameters) a group of highly qualified medical consultants participated in working sessions to determine which medical measurements are required to meet the objectives of the study. In addition, various Life Sciences personnel from NASA (Headquarters, Langley, MSC) participated in monthly review sessions. The organization, team members, consultants, and some of the part-time contributors are shown in Figure 1. This final report embodies contributions from all of these participants

    Digital tabletops and collaborative learning

    Get PDF
    People collaborate around tables at home, school and work. Digital tabletop technology presents an opportunity to bring computer support to these traditional face-to-face collaborative settings. This thesis principally addresses the challenge of designing digital tabletop applications for small group learning in the classroom and makes contributions in two distinct, but closely related areas: (i) interaction techniques for digital tabletops; and (ii) the design and evaluation of a digital tabletop-based system for supporting collaborative learning. A review of previous literature combined with a preliminary observational study on collaboration around traditional tables indentifies a number of requirements for tabletop interaction. These include the need for fluid interaction techniques that allow control of interface object attributes when these objects are moved between tabletop territories. Attribute gates are proposed as a solution to this problem through utilizing a novel, crossing-based, interaction technique. A recognition of the territorial focus in existing interaction techniques, and their limiting assumption that users work at relatively fixed locations around the table, led to the identification of another challenge, supporting the mobility of users around the shared workspace of the table. TANGISOFT is presented as a hybrid tangible-soft keyboard designed specifically for applications that require mobile users with moderate text entry requirements. The investigation of the potential of tabletop technology to support collaborative learning was carried out through the design, development, and evaluation of Digital Mysteries. From an interaction design perspective, the design aimed to utilize the unique affordances of tabletops in terms of combining the benefits of traditional tables and digital technology. From a learning perspective, the design aimed to support higher-level thinking skills, feedback, reflection, and metacognition by focusing on activities that promote these skills and supporting effective collaboration. The evaluation of Digital Mysteries demonstrated that the design was successful in encouraging the targeted learning activities. The design process and validation of Digital Mysteries embody a significant contribution to the development of our understanding of digital tabletop technology at the application level, and collaborative learning applications in particular. This understanding is summarized in the form of general guidelines for designing collaborative learning applications for digital tabletop technology.EThOS - Electronic Theses Online ServiceDiwan Software LtdGBUnited Kingdo

    Creating Knowledge, volume 4, 2011

    Get PDF
    The College of Liberal Arts and Sciences, through the deliberations and efforts of its task force on “Students Creating Knowledge”, chaired by Professor Ralph Erber, associate dean for research in the College of Liberal Arts and Sciences, committed itself to a number of new strategic initiatives that would enhance and enrich the academic quality of the student experience within the college. Chief among these initiatives was one that would encourage students to become actively engaged in creating scholarship and research and give them a venue for the publication of their essays. The first volume of “Creating Knowledge: The LA&S Student Research Journal” was published in 2008. I am now extremely pleased to be able to introduce the fourth volume of Creating Knowledge. This year’s publication, like the ones that preceded it, gives considerable testimony to the creativity, hard work and sophistication of our undergraduate scholars. It is through the continuing, annual publication of this undergraduate student journal that we aim to encourage students across the college and the university to understand that leadership within their disciplines requires them to not only be familiar with the knowledge base of the discipline, but to have the experience of being actively engaged in understanding how creative work and/or scientific discoveries are created through research, scholarship and the dissemination and sharing of knowledge. I want to congratulate, first and foremost, the many student scholars whose work is featured in this fourth volume of the journal. I also want to thank the students and faculty who served to make this publication possible—those who served on the editorial board that shaped this journal and who reviewed the many submissions of student work. In accomplishing this task all of you have participated in what is the heart of scholarship—the contributions to enabling and sustaining an intellectual community—one which we hope will lead you to make similar contributions beyond the college and DePaul University. To one and all, my most sincere congratulations and gratitude. Chuck Suchar Deanhttps://via.library.depaul.edu/ckgallery/1003/thumbnail.jp

    Longterm Generalized Actions for Smart, Autonomous Robot Agents

    Get PDF
    Creating intelligent artificial systems, and in particular robots, that improve themselves just like humans do is one of the most ambitious goals in robotics and machine learning. The concept of robot experience exists for some time now, but has up to now not fully found its way into autonomous robots. This thesis is devoted to both, analyzing the underlying requirements for enabling robot learning from experience and actually implementing it on real robot hardware. For effective robot learning from experience I present and discuss three main requirements: (a ) Clearly expressing what a robot should do, on a vague, abstract level I introduce Generalized Plans as a means to express the intention rather than the actual action sequence of a task, removing as much task specific knowledge as possible. (a ) Defining, collecting, and analyzing robot experiences to enable robots to improve I present Episodic Memories as a container for all collected robot experiences for any arbitrary task and create sophisticated action (effect) prediction models from them, allowing robots to make better decisions. (a ) Properly abstracting from reality and dealing with failures in the domain they occurred in I propose failure handling strategies, a failure taxonomy extensible through experience, and discuss the relationship between symbolic/discrete and subsymbolic/continuous systems in terms of robot plans interacting with real world sensors and actuators. I concentrate on the domain of human-scale robot activities, specifically on doing household chores. Tasks in this domain offer many repeating patterns and are ideal candidates for abstracting, encapsulating, and modularizing robot plans into a more general form. This way, very similar plan structures are transformed into parameters that change the behavior of the robot while performing the task, making the plans more flexible. While performing tasks, robots encounter the same or similar situations over and over again. Albeit humans are able to benefit from this and improve at what they do, robots in general lack this ability. This thesis presents techniques for collecting and making robot experiences accessible to robots and outside observers alike, answering high level questions such as What are good spots to stand at for grasping objects from the fridge? or Which objects are especially difficult to grasp with two hands while they are in the oven? . By structuring and tapping into a robot's memory, it can make more informed decisions that are not based on manually encoded information, but self-improved behavior. To this end, I present several experience-based approaches to improve a robot's autonomous decisions, such as parameter choices, during execution time. Robots that interact with the real world are bound to deal with unexpected events and must properly react to failures of any kind of action. I present an extensible failure model that suits the structure of Generalized Plans and Episodic Memories and make clear how each module should deal with their own failures rather than directly handing them up to a governing cognitive architecture. In addition, I make a distinction between discrete parametrizations of Generalized Plans and continuous low level components, and how to translate between the two

    Effort reduction and collision avoidance for powered wheelchairs : SCAD assistive mobility system

    Get PDF
    The new research described in this dissertation created systems and methods to assist wheelchair users and provide them with new realistic and interesting driving opportunities. The work also created and applied novel effort reduction and collision avoidance systems and some new electronic interactive devices. A Scanning Collision Avoidance Device (SCAD) was created that attached to standard powered wheelchairs to help prevent children from driving into things. Initially, mechanical bumpers were used but they made many wheelchairs unwieldy, so a novel system that rotated a single ultra-sonic transducer was created. The SCAD provided wheelchair guidance and assisted with steering. Optical side object detectors were included to cover blind spots and also assist with doorway navigation. A steering lockout mode was also included for training, which stopped the wheelchair from driving towards a detected object. Some drivers did not have sufficient manual dexterity to operate a reverse control. A reverse turn manoeuvring mode was added that applied a sequential reverse and turn function, enabling a driver to escape from a confined situation by operating a single turn control. A new generation of Proportional SCAD was created that operated with proportional control inputs rather than switches and new systems were created to reduce veer, including effort reduction systems. New variable switches were created that provided variable speed control in place of standard digital switches and all that research reduced the number of control actions required by a driver. Finally, some new systems were created to motivate individuals to try new activities. These included a track guided train and an adventure playground that including new interactive systems. The research was initially inspired by the needs of young people at Chailey Heritage, the novel systems provided new and more autonomous driving opportunities for many powered wheelchair users in less structured environments.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore