6 research outputs found

    Artificial intelligence applications and cataract management: A systematic review

    Get PDF
    Artificial intelligence (AI)-based applications exhibit the potential to improve the quality and efficiency of patient care in different fields, including cataract management. A systematic review of the different applications of AI-based software on all aspects of a cataract patient's management, from diagnosis to follow-up, was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. All selected articles were analyzed to assess the level of evidence according to the Oxford Centre for Evidence-Based Medicine 2011 guidelines, and the quality of evidence according to the Grading of Recommendations Assessment, Development and Evaluation system. Of the articles analyzed, 49 met the inclusion criteria. No data synthesis was possible for the heterogeneity of available data and the design of the available studies. The AI-driven diagnosis seemed to be comparable and, in selected cases, to even exceed the accuracy of experienced clinicians in classifying disease, supporting the operating room scheduling, and intraoperative and postoperative management of complications. Considering the heterogeneity of data analyzed, however, further randomized controlled trials to assess the efficacy and safety of AI application in the management of cataract should be highly warranted

    System for surgical block schedule optimization

    Get PDF
    Proper distribution and utilization of operating rooms is one of the biggest factors when combating the ever growing waiting lists for surgical interventions. In this ecosystem, the incorrect prediction of a procedure’s duration will imply the remaining scheduled procedures, further more when this prediction is an underestimation. This problem is is exacerbated by the sheer amount of different interventions with their specificities and conditions. Tackling this question, we developed an application running along side the main surgery schedule of Centro Hospitalar de São João, in charge of applying regression algorithms to better calculate the expected surgery duration. With these, we were able to apply a scheduling algorithm that produces a viable surgery table. Our final implementation was able to work independently of human interaction, producing a possible alternative to the manual methods common on these situations.A distribuição e utilização adequada dos blocos operatórios é um dos principais fatores quando se visa diminuir o constante aumento das listas de espera para intervenções cirúrgicas. Neste ecossistema, uma má previsão da duração de um procedimento trará problemas na restante calendarização dos procedimentos, ainda mais quando esta previsão é menor que o tempo real de cirurgia. A resolução deste problema é exacerbada pela quantidade de diferentes intervenções, com as suas especificidades e condições. Para fazer face a esta questão, desenvolvemos uma aplicação que corre ao lado do calendário principal do Centro Hospitalar de São João, encarregado de aplicar algoritmos de regressão para melhorar o calculo da duração da cirurgia. A nossa implementação final foi capaz de trabalhar independentemente da interação humana, produzindo uma alternativa apossável aos métodos manuais comuns nestas situações

    Intraoperative process monitoring using generalized surgical process models

    Get PDF
    Der Chirurg in einem modernen Operationssaal kann auf die Funktionen einer Vielzahl technischer, seine Arbeit unterstützender, Geräte zugreifen. Diese Geräte und damit auch die Funktionen, die diese zur Verfügung stellen, sind nur unzureichend miteinander vernetzt. Die unzureichende Interoperabilität der Geräte bezieht sich dabei nicht nur auf den Austausch von Daten untereinander, sondern auch auf das Fehlen eines zentralen Wissens über den gesamten Ablauf des chirurgischen Prozesses. Es werden daher Systeme benötigt, die Prozessmodelle verarbeiten und damit globales Wissen über den Prozess zur Verfügung stellen können. Im Gegensatz zu den meisten Prozessen, die in der Wirtschaft durch Workflow Management-Systeme (WfMS) unterstützt werden, ist der chirurgische Prozess durch eine hohe Variabilität gekennzeichnet. Mittlerweile gibt es viele Ansätze feingranulare, hochformalisierte Modelle des chirurgischen Prozesses zu erstellen. In dieser Arbeit wird zum einen die Qualität eines, auf patienten individuellen Eingriffen basierenden, generalisierten Modells hinsichtlich der Abarbeitung durch ein WfMS untersucht, zum anderen werden die Voraussetzungen die, die vorgelagerten Systeme erfüllen müssen geprüft. Es wird eine Aussage zur Abbruchrate der Pfadverfolgung im generalisierten Modell gemacht, das durch eine unterschiedliche Anzahl von patientenindividuellen Modellen erstellt wurde. Zudem wird die Erfolgsrate zum Wiederfinden des Prozesspfades im Modell ermittelt. Ausserdem werden die Anzahl der benötigten Schritte zumWiederfinden des Prozesspfades im Modell betrachtet.:List of Figures iv List of Tables vi 1 Introduction 1 1.1 Motivation 1 1.2 Problems and objectives 3 2 State of research 6 2.1 Definitions of terms 6 2.1.1 Surgical process 6 2.1.2 Surgical Process Model 7 2.1.3 gSPM and surgical workflow 7 2.1.4 Surgical workflow management system 8 2.1.5 Summary 9 2.2 Workflow Management Systems 10 2.2.1 Agfa HealthCare - ORBIS 10 2.2.2 Siemens Clinical Solutions - Soarian 10 2.2.3 Karl Storz - ORchestrion 10 2.2.4 YAWL BPM 11 2.3 Sensor systems 12 2.3.1 Sensors according to DIN1319 13 2.3.2 Video-based sensor technology 14 2.3.3 Human-based sensor technology 15 2.3.4 Summary 15 2.4 Process model 15 2.4.1 Top-Down 15 2.4.2 Bottom-Up 17 2.4.3 Summary 18 2.5 Methods for creating the ICCAS process model 18 2.5.1 Recording of the iSPMs 18 2.5.2 Creation of the gSPMs 20 2.6 Summary 21 3 Model-based design of workflow schemas 23 3.1 Abstract 24 3.2 Introduction 25 3.3 Model driven design of surgical workflow schemata 27 3.3.1 Recording of patient individual surgical process models 27 3.3.2 Generating generalized SPM from iSPMs 27 3.3.3 Transforming gSPM into workflow schemata 28 3.4 Summary and Outlook 30 4 Model-based validation of workflow schemas 31 4.1 Abstract 32 4.2 Introduction 33 4.3 Methods 36 4.3.1 Surgical Process Modeling 36 4.3.2 Workflow Schema Generation 38 4.3.3 The SurgicalWorkflow Management and Simulation System 40 4.3.4 System Validation Study Design 42 4.4 Results 44 4.5 Discussion 47 4.6 Conclusion 50 4.7 Acknowledgments 51 5 Influence of missing sensor information 52 5.1 Abstract 53 5.2 Introduction 54 5.3 Methodology 57 5.3.1 Surgical process modeling 57 5.3.2 Test system 59 5.3.3 System evaluation study design 61 5.4 Results 63 5.5 Discussion 66 5.6 Conclusion 68 5.7 Acknowledgments 68 5.8 Conflict of interest 68 6 Summary and outlook 69 6.1 Summary 69 6.2 Outlook 70 Bibliography 7
    corecore