3,356 research outputs found

    Cross-layer Balanced and Reliable Opportunistic Routing Algorithm for Mobile Ad Hoc Networks

    Full text link
    For improving the efficiency and the reliability of the opportunistic routing algorithm, in this paper, we propose the cross-layer and reliable opportunistic routing algorithm (CBRT) for Mobile Ad Hoc Networks, which introduces the improved efficiency fuzzy logic and humoral regulation inspired topology control into the opportunistic routing algorithm. In CBRT, the inputs of the fuzzy logic system are the relative variance (rv) of the metrics rather than the values of the metrics, which reduces the number of fuzzy rules dramatically. Moreover, the number of fuzzy rules does not increase when the number of inputs increases. For reducing the control cost, in CBRT, the node degree in the candidate relays set is a range rather than a constant number. The nodes are divided into different categories based on their node degree in the candidate relays set. The nodes adjust their transmission range based on which categories that they belong to. Additionally, for investigating the effection of the node mobility on routing performance, we propose a link lifetime prediction algorithm which takes both the moving speed and moving direction into account. In CBRT, the source node determines the relaying priorities of the relaying nodes based on their utilities. The relaying node which the utility is large will have high priority to relay the data packet. By these innovations, the network performance in CBRT is much better than that in ExOR, however, the computation complexity is not increased in CBRT.Comment: 14 pages, 17 figures, 31 formulas, IEEE Sensors Journal, 201

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Distributed localized contextual event reasoning under uncertainty

    Get PDF
    We focus on Internet of Things (IoT) environments where sensing and computing devices (nodes) are responsible to observe, reason, report and react to a specific phenomenon. Each node captures context from data streams and reasons on the presence of an event. We propose a distributed predictive analytics scheme for localized context reasoning under uncertainty. Such reasoning is achieved through a contextualized, knowledge-driven clustering process, where the clusters of nodes are formed according to their belief on the presence of the phenomenon. Each cluster enhances its localized opinion about the presence of an event through consensus realized under the principles of Fuzzy Logic (FL). The proposed FLdriven consensus process is further enhanced with semantics adopting Type-2 Fuzzy Sets to handle the uncertainty related to the identification of an event. We provide a comprehensive experimental evaluation and comparison assessment with other schemes over real data and report on the benefits stemmed from its adoption in IoT environments

    A Wildfire Prediction Based on Fuzzy Inference System for Wireless Sensor Networks

    Get PDF
    The study of forest fires has been traditionally considered as an important application due to the inherent danger that this entails. This phenomenon takes place in hostile regions of difficult access and large areas. Introduction of new technologies such as Wireless Sensor Networks (WSNs) has allowed us to monitor such areas. In this paper, an intelligent system for fire prediction based on wireless sensor networks is presented. This system obtains the probability of fire and fire behavior in a particular area. This information allows firefighters to obtain escape paths and determine strategies to fight the fire. A firefighter can access this information with a portable device on every node of the network. The system has been evaluated by simulation analysis and its implementation is being done in a real environment.Junta de Andalucía P07-TIC-02476Junta de Andalucía TIC-570

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    CAF: Cluster Algorithm and A-Star with Fuzzy Approach for Lifetime Enhancement in Wireless Sensor Networks

    Get PDF
    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria

    Energy-aware Sensor Data Collection for Mobile Users

    Get PDF
    Tänapäeval levib järjest rohkem rakendusi, mis tajuvad ümbritsevat keskkonda ning pakuvad sellele põhinevalt kasutajale lisavõimalusi. Selliste võimaluste pakkumiseks on arendatud prototüüp, mis kogub keskkonna kohta andmeid kasutades Arduino platvormil põhinevad sensorite moodulit ning keskset andmet kogumise serverit. Käesolevas töös arendati antud prototüüpi edasi, et tõsta aku vastupidavust ning seeläbi parandada lahenduse kasutatavust. Selleks loodi varieeruva sensoriandmete saatmise intervalliga lahendus, mis koosneb hägusloogikat kasutavast kontrollsüsteemist ning lihtsa lineaarse regressiooni mudelist. Lisaks loodi lahendus, mis lubab sensorite moodulil vabadel hetkedel minna puhkerežiimi. Töö käigus asendati seni kasutuselolev XMPP protokoll HTTP protokolli vastu, et parandada ühenduse loomise ajakulu ning lubada sensorite moodulil kauem puhkerežiimis olla. Parandatud lahenduse tulemusi mõõdeti mitme testi käigus. Kaks põhilist testi, mille käigus sensorite moodul sai voolu 9-voldiselt patareilt, andsid vastavalt tulemusteks 80 ja 110 \% pikema eluea. Sellest tulenevalt saab eeldada, et pakutud puhkerežiimi ja muutuva intervalliga andmete kogumist kasutav lahendus parandab aku vastupidavust ning seega ka prototüübi kasulikkust.Nowadays, mobile applications are becoming more context aware due to technological achievements which enable the applications to anticipate users’ intentions. This is achieved through using the device’s own micromechanical artifacts that can be used to perceive the environment. However, this is constrained to the hardware limitations of devices as not all devices provide the same options. Moreover, perceiving the environment strains the battery and therefore has its impact on devices' everyday usage. To remedy this, a proposed solution has been made in the thesis “Context Sensor Data on Demand for Mobile Users Supported by XMPP” by Kaarel Hanson. The solution is to gather environmental data by specialized sensor modules and store it in a data server. Afterwards, devices can query the data from the server and thus gain access to information beyond the capabilities of their own hardware. The solution uses XMPP for transporting sensor data from Arduino microcontrollers (sensor modules) to the cloud. Arduino provides low-cost hardware, while the cloud offers the reliable and high- availability means for storing and processing sensor data. However, the developed prototype shows that running on a 9V battery the microcontroller lasts for 101 minutes when using an Ethernet module and 161,5 minutes with a WiFi module. These results are not good enough for remote data collection with limited access as the maintenance cost would be too high when the batteries need to be replaced frequently. This thesis proposes an optimisation for the system so that instead of reading and sending sensor data every 10 seconds, the cloud server would notify the controller when to start sending data and when to stop. This means implementing an algorithm for detecting similar sensor data readings and notifying the microcontroller of needed operations. With similar readings, the microcontroller could be put to an idle state to limit power consumption, which would prolong battery life. The aim is to optimise the sensor reading process enough to prolong Arduino microcontroller’s battery life on a 9V battery

    Genetic-fuzzy based load balanced protocol for WSNs

    Get PDF
    Recent advancement in wireless sensor networks primarily depends upon energy constraint. Clustering is the most effective energy-efficient technique to provide robust, fault-tolerant and also enhance network lifetime and coverage. Selection of optimal number of cluster heads and balancing the load of cluster heads are most challenging issues. Evolutionary based approach and soft computing approach are best suitable for counter the above problems rather than mathematical approach. In this paper we propose hybrid technique where Genetic algorithm is used for the selection of optimal number of cluster heads and their fitness value of chromosome to give optimal number of cluster head and minimizing the energy consumption is provided with the help of fuzzy logic approach. Finally cluster heads uses multi-hop routing based on A*(A-star) algorithm to send aggregated data to base station which additionally balance the load. Comparative study among LEACH, CHEF, LEACH-ERE, GAEEP shows that our proposed algorithm outperform in the area of total energy consumption with various rounds and network lifetime, number of node alive versus rounds and packet delivery or packet drop ratio over the rounds, also able to balances the load at cluster head
    corecore