130 research outputs found

    Developing Hybrid Machine Learning Models to Assign Health Score to Railcar Fleets for Optimal Decision Making

    Full text link
    A large amount of data is generated during the operation of a railcar fleet, which can easily lead to dimensional disaster and reduce the resiliency of the railcar network. To solve these issues and offer predictive maintenance, this research introduces a hybrid fault diagnosis expert system method that combines density-based spatial clustering of applications with noise (DBSCAN) and principal component analysis (PCA). Firstly, the DBSCAN method is used to cluster categorical data that are similar to one another within the same group. Secondly, PCA algorithm is applied to reduce the dimensionality of the data and eliminate redundancy in order to improve the accuracy of fault diagnosis. Finally, we explain the engineered features and evaluate the selected models by using the Gain Chart and Area Under Curve (AUC) metrics. We use the hybrid expert system model to enhance maintenance planning decisions by assigning a health score to the railcar system of the North American Railcar Owner (NARO). According to the experimental results, our expert model can detect 96.4% of failures within 50% of the sample. This suggests that our method is effective at diagnosing failures in railcars fleet.Comment: 21 pages, 7 figures, 3 table

    Remaining Useful Life Prediction of IIoT-Enabled Complex Industrial Systems with Hybrid Fusion of Multiple Information Sources

    Get PDF

    Remaining Useful Life Estimation Based on Asynchronous Multisource Monitoring Information Fusion

    Get PDF
    An asynchronous RUL fusion estimation algorithm is presented for the hidden degradation process with multiple asynchronous monitoring sensors based on multisource information fusion. Firstly, a state-space type model is established by modeling the stochastic degradation as a Wiener process and transforming asynchronous indirectly observations in the fusion period to the fusion time. The statistical characteristics of involved noises and their correlations are analyzed. Secondly, the estimate of the hidden degradation state is obtained by applying Kalman filtering with correlated noises to the established state-space model, where the synchronized observations are fused. Also, the unknown model parameters are recursively identified based on the Expectation-Maximization (EM) algorithm with the Generic Algorithm (GA) adopted to solve the maximization problem. Finally, the probability distribution of RUL is obtained using the fused degradation state estimation and the updated identification result of the model parameters. Simulation results show that the proposed fusion method has better performance than the RUL estimation with single sensor

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    A deep learning approach towards railway safety risk assessment

    Get PDF
    Railway stations are essential aspects of railway systems, and they play a vital role in public daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition to perform risk management in railway systems in which a convolutional neural network (CNN) is applied as a supervised machine learning model to identify risks. However, risk management in railway stations is challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry associations and researchers to reduce the number of accidents and injuries in this field, such incidents still occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it detects adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that represent high-risk outcomes. The framework of the presented method is generalisable to a wide range of locations and to additional types of risks

    The Artificial Intelligence (AI) Model Canvas Framework and Use Cases

    Get PDF
    Artificial Intelligence (AI) has grown increasingly in the past decade. The growth and development bring up several issues for a successful AI project. The AI project requires communication across different domains, like specialists, engineers, data scientists, stakeholders, and ecosystem partners (analytic, storage, labeling, and open-source platforms). It offers numerous vital qualities to give deeper insights into user behavior and give recommendations based on the data. The AI project is hard to define, it requires more than mastery of data, and every enterprise needs guidance and a simple plan on how to use AI. This research creates a wide-view approach of different types of AI Model Canvas for companies that do projects, produce, promote and provide AI technology to organizations. We selected three canvases that represented AI, Machine Learning (ML), and Deep Learning (DL) method. We illustrate and interpret those canvas along with some case studies. We conclude our research by writing the final case report for each use case from the AI model canvas. By filling the one-page Canvas, it will help us explain what AI will provide, how it will interact with humans judgment, and how it will be used to influence decisions, how you will measure success & outcome, and the type of data needed to train, operate, and improve AI. The AI Model Canvas purposed a clear description and differentiation of the roles of stakeholders, customers, and AI strategy. This canvas also can be used in analytical and assembly projects in making new product lines

    Structural Health Monitoring (SHM) and Determination of Surface Defects in Large Metallic Structures using Ultrasonic Guided Waves

    Get PDF
    Ultrasonic guided wave (UGW) is one of the most commonly used technologies for non-destructive evaluation (NDE) and structural health monitoring (SHM) of structural components. Because of its excellent long-range diagnostic capability, this method is effective in detecting cracks, material loss, and fatigue-based defects in isotropic and anisotropic structures. The shape and orientation of structural defects are critical parameters during the investigation of crack propagation, assessment of damage severity, and prediction of remaining useful life (RUL) of structures. These parameters become even more important in cases where the crack intensity is associated with the safety of men, environment, and material, such as ship’s hull, aero-structures, rail tracks and subsea pipelines. This paper reviews the research literature on UGWs and their application in defect diagnosis and health monitoring of metallic structures. It has been observed that no significant research work has been convened to identify the shape and orientation of defects in plate-like structures. We also propose an experimental research work assisted by numerical simulations to investigate the response of UGWs upon interaction with cracks in different shapes and orientations. A framework for an empirical model may be considered to determine these structural flaws

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Semantic multimedia modelling & interpretation for search & retrieval

    Get PDF
    With the axiomatic revolutionary in the multimedia equip devices, culminated in the proverbial proliferation of the image and video data. Owing to this omnipresence and progression, these data become the part of our daily life. This devastating data production rate accompanies with a predicament of surpassing our potentials for acquiring this data. Perhaps one of the utmost prevailing problems of this digital era is an information plethora. Until now, progressions in image and video retrieval research reached restrained success owed to its interpretation of an image and video in terms of primitive features. Humans generally access multimedia assets in terms of semantic concepts. The retrieval of digital images and videos is impeded by the semantic gap. The semantic gap is the discrepancy between a user’s high-level interpretation of an image and the information that can be extracted from an image’s physical properties. Content- based image and video retrieval systems are explicitly assailable to the semantic gap due to their dependence on low-level visual features for describing image and content. The semantic gap can be narrowed by including high-level features. High-level descriptions of images and videos are more proficient of apprehending the semantic meaning of image and video content. It is generally understood that the problem of image and video retrieval is still far from being solved. This thesis proposes an approach for intelligent multimedia semantic extraction for search and retrieval. This thesis intends to bridge the gap between the visual features and semantics. This thesis proposes a Semantic query Interpreter for the images and the videos. The proposed Semantic Query Interpreter will select the pertinent terms from the user query and analyse it lexically and semantically. The proposed SQI reduces the semantic as well as the vocabulary gap between the users and the machine. This thesis also explored a novel ranking strategy for image search and retrieval. SemRank is the novel system that will incorporate the Semantic Intensity (SI) in exploring the semantic relevancy between the user query and the available data. The novel Semantic Intensity captures the concept dominancy factor of an image. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other. The SemRank will rank the retrieved images on the basis of Semantic Intensity. The investigations are made on the LabelMe image and LabelMe video dataset. Experiments show that the proposed approach is successful in bridging the semantic gap. The experiments reveal that our proposed system outperforms the traditional image retrieval systems
    • …
    corecore