145,497 research outputs found

    Protein Domain Linker Prediction: A Direction for Detecting Protein – Protein Interactions

    Get PDF
    Protein chains are generally long and consist of multiple domains. Domains are the basic of elements of protein structures that can exist, evolve and function independently. The accurate and reliable identification of protein domains and their interactions has very important impacts in several protein research areas. The accurate prediction of protein domains is a fundamental stage in both experimental and computational proteomics. The knowledge is an initial stage of protein tertiary structure prediction which can give insight into the way in which protein works. The knowledge of domains is also useful in classifying the proteins, understanding their structures, functions and evolution, and predicting protein-protein interactions (PPI). However, predicting structural domains within proteins is a challenging task in computational biology. A promising direction of domain prediction is detecting inter-domain linkers and then predicting the reigns of the protein sequence in which the structural domains are located accordingly. Protein-protein interactions occur at almost every level of cell function. The identification of interaction among proteins and their associated domains provide a global picture of cellular functions and biological processes. It is also an essential step in the construction of PPI networks for human and other organisms. PPI prediction has been considered as a promising alternative to the traditional drug design techniques. The identification of possible viral-host protein interaction can lead to a better understanding of infection mechanisms and, in turn, to the development of several medication drugs and treatment optimization. In this work, a compact and accurate approach for inter-domain linker prediction is developed based solely on protein primary structure information. Then, inter-domain linker knowledge is used in predicting structural domains and detecting PPI. The research work in this dissertation can be summarized in three main contributions. The first contribution is predicting protein inter-domain linker regions by introducing the concept of amino acid compositional index and refining the prediction by using the Simulated Annealing optimization technique. The second contribution is identifying structural domains based on inter-domain linker knowledge. The inter-domain linker knowledge, represented by the compositional index, is enhanced by the in cooperation of biological knowledge, represented by amino acid physiochemical properties. To develop a well optimized Random Forest classifier for predicting novel domain and inter-domain linkers. In the third contribution, the domain information knowledge is utilized to predict protein-protein interactions. This is achieved by characterizing structural domains within protein sequences, analyzing their interactions, and predicting protein interaction based on their interacting domains. The experimental studies and the higher accuracy achieved is a valid argument in favor of the proposed framework

    Prediction of protein-protein interaction types using association rule based classification

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Park et alBackground: Protein-protein interactions (PPI) can be classified according to their characteristics into, for example obligate or transient interactions. The identification and characterization of these PPI types may help in the functional annotation of new protein complexes and in the prediction of protein interaction partners by knowledge driven approaches. Results: This work addresses pattern discovery of the interaction sites for four different interaction types to characterize and uses them for the prediction of PPI types employing Association Rule Based Classification (ARBC) which includes association rule generation and posterior classification. We incorporated domain information from protein complexes in SCOP proteins and identified 354 domain-interaction sites. 14 interface properties were calculated from amino acid and secondary structure composition and then used to generate a set of association rules characterizing these domain-interaction sites employing the APRIORI algorithm. Our results regarding the classification of PPI types based on a set of discovered association rules shows that the discriminative ability of association rules can significantly impact on the prediction power of classification models. We also showed that the accuracy of the classification can be improved through the use of structural domain information and also the use of secondary structure content. Conclusion: The advantage of our approach is that we can extract biologically significant information from the interpretation of the discovered association rules in terms of understandability and interpretability of rules. A web application based on our method can be found at http://bioinfo.ssu.ac.kr/~shpark/picasso/SHP was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2005-214-E00050). JAR has been supported by the Programme Alβan, the European Union Programme of High level Scholarships for Latin America, scholarship E04D034854CL. SK was supported by Soongsil University Research Fund

    Analysis on multi-domain cooperation for predicting protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Domains are the basic functional units of proteins. It is believed that protein-protein interactions are realized through domain interactions. Revealing multi-domain cooperation can provide deep insights into the essential mechanism of protein-protein interactions at the domain level and be further exploited to improve the accuracy of protein interaction prediction.</p> <p>Results</p> <p>In this paper, we aim to identify cooperative domains for protein interactions by extending two-domain interactions to multi-domain interactions. Based on the high-throughput experimental data from multiple organisms with different reliabilities, the interactions of domains were inferred by a Linear Programming algorithm with Multi-domain pairs (LPM) and an Association Probabilistic Method with Multi-domain pairs (APMM). Experimental results demonstrate that our approach not only can find cooperative domains effectively but also has a higher accuracy for predicting protein interaction than the existing methods. Cooperative domains, including strongly cooperative domains and superdomains, were detected from major interaction databases MIPS and DIP, and many of them were verified by physical interactions from the crystal structures of protein complexes in PDB which provide intuitive evidences for such cooperation. Comparison experiments in terms of protein/domain interaction prediction justified the benefit of considering multi-domain cooperation.</p> <p>Conclusion</p> <p>From the computational viewpoint, this paper gives a general framework to predict protein interactions in a more accurate manner by considering the information of both multi-domains and multiple organisms, which can also be applied to identify cooperative domains, to reconstruct large complexes and further to annotate functions of domains. Supplementary information and software are provided in <url>http://intelligent.eic.osaka-sandai.ac.jp/chenen/MDCinfer.htm</url> and <url>http://zhangroup.aporc.org/bioinfo/MDCinfer</url>.</p

    Protein complex prediction via verifying and reconstructing the topology of domain-domain interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput methods for detecting protein-protein interactions enable us to obtain large interaction networks, and also allow us to computationally identify the associations of proteins as protein complexes. Although there are methods to extract protein complexes as sets of proteins from interaction networks, the extracted complexes may include false positives because they do not account for the structural limitations of the proteins and thus do not check that the proteins in the extracted complex can simultaneously bind to each other. In addition, there have been few searches for deeper insights into the protein complexes, such as of the topology of the protein-protein interactions or into the domain-domain interactions that mediate the protein interactions.</p> <p>Results</p> <p>Here, we introduce a combinatorial approach for prediction of protein complexes focusing not only on determining member proteins in complexes but also on the DDI/PPI organization of the complexes. Our method analyzes complex candidates predicted by the existing methods. It searches for optimal combinations of domain-domain interactions in the candidates based on an assumption that the proteins in a candidate can form a true protein complex if each of the domains is used by a single protein interaction. This optimization problem was mathematically formulated and solved using binary integer linear programming. By using publicly available sets of yeast protein-protein interactions and domain-domain interactions, we succeeded in extracting protein complex candidates with an accuracy that is twice the average accuracy of the existing methods, MCL, MCODE, or clustering coefficient. Although the configuring parameters for each algorithm resulted in slightly improved precisions, our method always showed better precision for most values of the parameters.</p> <p>Conclusions</p> <p>Our combinatorial approach can provide better accuracy for prediction of protein complexes and also enables to identify both direct PPIs and DDIs that mediate them in complexes.</p

    Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions

    Get PDF
    Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information.AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins.AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains

    Interaction Profile-Based Protein Classification of Death Domain

    Get PDF
    Background: The increasing number of protein sequences and 3D structure obtained fromgenomic initiatives is leading many of us to focus on proteomics, and to dedicate our experimentaland computational efforts on the creation and analysis of information derived from 3D structure.In particular, the high-throughput generation of protein-protein interaction data from a feworganisms makes such an approach very important towards understanding the molecularrecognition that make-up the entire protein-protein interaction network. Since the generation ofsequences, and experimental protein-protein interactions increases faster than the 3D structuredetermination of protein complexes, there is tremendous interest in developing in silico methodsthat generate such structure for prediction and classification purposes. In this study we focused onclassifying protein family members based on their protein-protein interaction distinctiveness.Structure-based classification of protein-protein interfaces has been described initially by Ponstinglet al. [1] and more recently by Valdar et al. [2] and Mintseris et al. [3], from complex structures thathave been solved experimentally. However, little has been done on protein classification based onthe prediction of protein-protein complexes obtained from homology modeling and dockingsimulation.Results: We have developed an in silico classification system entitled HODOCO (Homologymodeling, Docking and Classification Oracle), in which protein Residue Potential InteractionProfiles (RPIPS) are used to summarize protein-protein interaction characteristics. This systemapplied to a dataset of 64 proteins of the death domain superfamily was used to classify eachmember into its proper subfamily. Two classification methods were attempted, heuristic andsupport vector machine learning. Both methods were tested with a 5-fold cross-validation. Theheuristic approach yielded a 61% average accuracy, while the machine learning approach yielded an89% average accuracy.Conclusion: We have confirmed the reliability and potential value of classifying proteins via theirpredicted interactions. Our results are in the same range of accuracy as other studies that classifyprotein-protein interactions from 3D complex structure obtained experimentally. While ourclassification scheme does not take directly into account sequence information our results are inagreement with functional and sequence based classification of death domain family members

    Reconstruction of human protein interolog network using evolutionary conserved network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.</p> <p>Results</p> <p>This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.</p> <p>Conclusion</p> <p>Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.</p

    SMART 5: domains in the context of genomes and networks

    Get PDF
    The Simple Modular Architecture Research Tool (SMART) is an online resource () used for protein domain identification and the analysis of protein domain architectures. Many new features were implemented to make SMART more accessible to scientists from different fields. The new ‘Genomic’ mode in SMART makes it easy to analyze domain architectures in completely sequenced genomes. Domain annotation has been updated with a detailed taxonomic breakdown and a prediction of the catalytic activity for 50 SMART domains is now available, based on the presence of essential amino acids. Furthermore, intrinsically disordered protein regions can be identified and displayed. The network context is now displayed in the results page for more than 350 000 proteins, enabling easy analyses of domain interactions

    Binding Site Prediction for Protein-Protein Interactions and Novel Motif Discovery using Re-occurring Polypeptide Sequences

    Get PDF
    Background: While there are many methods for predicting protein-protein interaction, very few can determine the specific site of interaction on each protein. Characterization of the specific sequence regions mediating interaction (binding sites) is crucial for an understanding of cellular pathways. Experimental methods often report false binding sites due to experimental limitations, while computational methods tend to require data which is not available at the proteome-scale. Here we present PIPE-Sites, a novel method of protein specific binding site prediction based on pairs of re-occurring polypeptide sequences, which have been previously shown to accurately predict proteinprotein interactions. PIPE-Sites operates at high specificity and requires only the sequences of query proteins and a database of known binary interactions with no binding site data, making it applicable to binding site prediction at the proteome-scale. Results: PIPE-Sites was evaluated using a dataset of 265 yeast and 423 human interacting proteins pairs with experimentally-determined binding sites. We found that PIPE-Sites predictions were closer to the confirmed binding site than those of two existing binding site prediction methods based on domain-domain interactions, when applied to the same dataset. Finally, we applied PIPE-Sites to two datasets of 2347 yeast and 14,438 human novel interacting protein pairs predicted to interact with high confidence. An analysis of the predicted interaction sites revealed a number of protein subsequences which are highly re-occurring in binding sites and which may represent novel binding motifs. Conclusions: PIPE-Sites is an accurate method for predicting protein binding sites and is applicable to the proteome-scale. Thus, PIPE-Sites could be useful for exhaustive analysis of protein binding patterns in whole proteomes as well as discovery of novel binding motifs. PIPE-Sites is available online a

    GAIA: a gram-based interaction analysis tool – an approach for identifying interacting domains in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-Protein Interactions (PPIs) play important roles in many biological functions. Protein domains, which are defined as independently folding structural blocks of proteins, physically interact with each other to perform these biological functions. Therefore, the identification of Domain-Domain Interactions (DDIs) is of great biological interests because it is generally accepted that PPIs are mediated by DDIs. As a result, much effort has been put on the prediction of domain pair interactions based on computational methods. Many DDI prediction tools using PPIs network and domain evolution information have been reported. However, tools that combine the primary sequences, domain annotations, and structural annotations of proteins have not been evaluated before.</p> <p>Results</p> <p>In this study, we report a novel approach called Gram-bAsed Interaction Analysis (GAIA). GAIA extracts peptide segments that are composed of fixed length of continuous amino acids, called n-grams (where n is the number of amino acids), from the annotated domain and DDI data set in <it>Saccharomyces cerevisiae </it>(budding yeast) and identifies a list of n-grams that may contribute to DDIs and PPIs based on the frequencies of their appearance. GAIA also reports the coordinate position of gram pairs on each interacting domain pair. We demonstrate that our approach improves on other DDI prediction approaches when tested against a gold-standard data set and achieves a true positive rate of 82% and a false positive rate of 21%. We also identify a list of 4-gram pairs that are significantly over-represented in the DDI data set and may mediate PPIs.</p> <p>Conclusion</p> <p>GAIA represents a novel and reliable way to predict DDIs that mediate PPIs. Our results, which show the localizations of interacting grams/hotspots, provide testable hypotheses for experimental validation. Complemented with other prediction methods, this study will allow us to elucidate the interactome of cells.</p
    corecore