13,054 research outputs found

    Predicting Protein Residue-Residue Contacts Using Random Forests and Deep Networks

    Get PDF
    Background: The ability to predict which pairs of amino acid residues in a protein are in contact with each other offers many advantages for various areas of research that focus on proteins. For example, contact prediction can be used to reduce the computational complexity of predicting the structure of proteins and even to help identify functionally important regions of proteins. These predictions are becoming especially important given the relatively low number of experimentally determined protein structures compared to the amount of available protein sequence data. Results: Here we have developed and benchmarked a set of machine learning methods for performing residue-residue contact prediction, including random forests, direct-coupling analysis, support vector machines, and deep networks (stacked denoising autoencoders). These methods are able to predict contacting residue pairs given only the amino acid sequence of a protein. According to our own evaluations performed at a resolution of +/− two residues, the predictors we trained with the random forest algorithm were our top performing methods with average top 10 prediction accuracy scores of 85.13% (short range), 74.49% (medium range), and 54.49% (long range). Our ensemble models (stacked denoising autoencoders combined with support vector machines) were our best performing deep network predictors and achieved top 10 prediction accuracy scores of 75.51% (short range), 60.26% (medium range), and 43.85% (long range) using the same evaluation. These tests were blindly performed on targets from the CASP11 dataset; and the results suggested that our models achieved comparable performance to contact predictors developed by groups that participated in CASP11. Conclusions: Due to the challenging nature of contact prediction, it is beneficial to develop and benchmark a variety of different prediction methods. Our work has produced useful tools with a simple interface that can provide contact predictions to users without requiring a lengthy installation process. In addition to this, we have released our C++ implementation of the direct-coupling analysis method as a standalone software package. Both this tool and our RFcon web server are freely available to the public at http://dna.cs.miami.edu/RFcon/

    Predicting Secondary Structures, Contact Numbers, and Residue-wise Contact Orders of Native Protein Structure from Amino Acid Sequence by Critical Random Networks

    Full text link
    Prediction of one-dimensional protein structures such as secondary structures and contact numbers is useful for the three-dimensional structure prediction and important for the understanding of sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs), for predicting one-dimensional structures, and apply it, with position-specific scoring matrices, to the prediction of secondary structures (SS), contact numbers (CN), and residue-wise contact orders (RWCO). The present method achieves, on average, Q3Q_3 accuracy of 77.8% for SS, correlation coefficients of 0.726 and 0.601 for CN and RWCO, respectively. The accuracy of the SS prediction is comparable to other state-of-the-art methods, and that of the CN prediction is a significant improvement over previous methods. We give a detailed formulation of critical random networks-based prediction scheme, and examine the context-dependence of prediction accuracies. In order to study the nonlinear and multi-body effects, we compare the CRNs-based method with a purely linear method based on position-specific scoring matrices. Although not superior to the CRNs-based method, the surprisingly good accuracy achieved by the linear method highlights the difficulty in extracting structural features of higher order from amino acid sequence beyond that provided by the position-specific scoring matrices.Comment: 20 pages, 1 figure, 5 tables; minor revision; accepted for publication in BIOPHYSIC

    Empirical Potential Function for Simplified Protein Models: Combining Contact and Local Sequence-Structure Descriptors

    Full text link
    An effective potential function is critical for protein structure prediction and folding simulation. Simplified protein models such as those requiring only CαC_\alpha or backbone atoms are attractive because they enable efficient search of the conformational space. We show residue specific reduced discrete state models can represent the backbone conformations of proteins with small RMSD values. However, no potential functions exist that are designed for such simplified protein models. In this study, we develop optimal potential functions by combining contact interaction descriptors and local sequence-structure descriptors. The form of the potential function is a weighted linear sum of all descriptors, and the optimal weight coefficients are obtained through optimization using both native and decoy structures. The performance of the potential function in test of discriminating native protein structures from decoys is evaluated using several benchmark decoy sets. Our potential function requiring only backbone atoms or CαC_\alpha atoms have comparable or better performance than several residue-based potential functions that require additional coordinates of side chain centers or coordinates of all side chain atoms. By reducing the residue alphabets down to size 5 for local structure-sequence relationship, the performance of the potential function can be further improved. Our results also suggest that local sequence-structure correlation may play important role in reducing the entropic cost of protein folding.Comment: 20 pages, 5 figures, 4 tables. In press, Protein

    Exploring the potential of 3D Zernike descriptors and SVM for protein\u2013protein interface prediction

    Get PDF
    Abstract Background The correct determination of protein–protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. Results In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein–Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). Conclusions The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class

    PiRaNhA: A server for the computational prediction of RNA-binding residues in protein sequences

    Get PDF
    The PiRaNhA web server is a publicly available online resource that automatically predicts the location of RNA-binding residues (RBRs) in protein sequences. The goal of functional annotation of sequences in the field of RNA binding is to provide predictions of high accuracy that require only small numbers of targeted mutations for verification. The PiRaNhA server uses a support vector machine (SVM), with position-specific scoring matrices, residue interface propensity, predicted residue accessibility and residue hydrophobicity as features. The server allows the submission of up to 10 protein sequences, and the predictions for each sequence are provided on a web page and via email. The prediction results are provided in sequence format with predicted RBRs highlighted, in text format with the SVM threshold score indicated and as a graph which enables users to quickly identify those residues above any specific SVM threshold. The graph effectively enables the increase or decrease of the false positive rate. When tested on a non-redundant data set of 42 protein sequences not used in training, the PiRaNhA server achieved an accuracy of 85%, specificity of 90% and a Matthews correlation coefficient of 0.41 and outperformed other publicly available servers. The PiRaNhA prediction server is freely available at http://www.bioinformatics.sussex.ac.uk/PIRANHA. © The Author(s) 2010. Published by Oxford University Press
    • …
    corecore