3,737 research outputs found

    Use of neural networks to predict Ocr accuracy

    Full text link
    Use of Neural Networks to Predict OCR Accuracy investigates issues in developing an artificial neural network (ANN) based system for prediction of OCR accuracy from the image of a page. This work extends the work of Blando and Gonzalez in the following ways: enlarging training data, proposing new features, comparing different ANN architectures, and introducing a cross-validation learning algorithm; The following experiments were performed: comparison of 14 dimension feature metrics and 7 dimension feature metrics, comparison of an ANN trained with and without cross-validation, comparison of different neural network architectures, comparison of prediction capability of neural network and linear regression, comparison of the prediction capability of neural network using 14 dimension feature metrics and linear regression using reject markers. The results show that neural network can outperform linear regression if properly trained, and that the new feature metrics provide improved predictive ability

    Learning to Read by Spelling: Towards Unsupervised Text Recognition

    Full text link
    This work presents a method for visual text recognition without using any paired supervisory data. We formulate the text recognition task as one of aligning the conditional distribution of strings predicted from given text images, with lexically valid strings sampled from target corpora. This enables fully automated, and unsupervised learning from just line-level text-images, and unpaired text-string samples, obviating the need for large aligned datasets. We present detailed analysis for various aspects of the proposed method, namely - (1) impact of the length of training sequences on convergence, (2) relation between character frequencies and the order in which they are learnt, (3) generalisation ability of our recognition network to inputs of arbitrary lengths, and (4) impact of varying the text corpus on recognition accuracy. Finally, we demonstrate excellent text recognition accuracy on both synthetically generated text images, and scanned images of real printed books, using no labelled training examples

    Applying Data Augmentation to Handwritten Arabic Numeral Recognition Using Deep Learning Neural Networks

    Full text link
    Handwritten character recognition has been the center of research and a benchmark problem in the sector of pattern recognition and artificial intelligence, and it continues to be a challenging research topic. Due to its enormous application many works have been done in this field focusing on different languages. Arabic, being a diversified language has a huge scope of research with potential challenges. A convolutional neural network model for recognizing handwritten numerals in Arabic language is proposed in this paper, where the dataset is subject to various augmentation in order to add robustness needed for deep learning approach. The proposed method is empowered by the presence of dropout regularization to do away with the problem of data overfitting. Moreover, suitable change is introduced in activation function to overcome the problem of vanishing gradient. With these modifications, the proposed system achieves an accuracy of 99.4\% which performs better than every previous work on the dataset.Comment: 5 pages, 6 figures, 3 table

    Learning feed-forward one-shot learners

    Full text link
    One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one shot. We construct the learner as a second deep network, called a learnet, which predicts the parameters of a pupil network from a single exemplar. In this manner we obtain an efficient feed-forward one-shot learner, trained end-to-end by minimizing a one-shot classification objective in a learning to learn formulation. In order to make the construction feasible, we propose a number of factorizations of the parameters of the pupil network. We demonstrate encouraging results by learning characters from single exemplars in Omniglot, and by tracking visual objects from a single initial exemplar in the Visual Object Tracking benchmark.Comment: The first three authors contributed equally, and are listed in alphabetical orde
    • …
    corecore