37 research outputs found

    Feasibility of transabdominal electrohysterography for analysis of uterine activity in nonpregnant women

    Get PDF
    Purpose: Uterine activity plays a key role in reproduction, and altered patterns of uterine contractility have been associated with important physiopathological conditions, such as subfertility, dysmenorrhea, and endometriosis. However, there is currently no method to objectively quantify uterine contractility outside pregnancy without interfering with the spontaneous contraction pattern. Transabdominal electrohysterography has great potential as a clinical tool to characterize noninvasively uterine activity, but results of this technique in nonpregnant women are poorly documented. The purpose of this study is to investigate the feasibility of transabdominal electrohysterography in nonpregnant women. Methods: Longitudinal measurements were performed on 22 healthy women in 4 representative phases of the menstrual cycle. Twelve electrohysterogram-based indicators previously validated in pregnancy have been estimated and compared in the 4 phases of the cycle. Using the Tukey honest significance test, significant differences were defined for P values below .05. Results: Half of the selected electrohysterogram-based indicators showed significant differences between menses and at least 1 of the other 3 phases, that is the luteal phase. Conclusion: Our results suggest transabdominal electrohysterography to be feasible for analysis of uterine activity in nonpregnant women. Due to the lack of a golden standard, this feasibility study is indirectly validated based on physiological observations. However, these promising results motivate further research aiming at evaluating electrohysterography as a method to improve understanding and management of dysfunctions (possibly) related to altered uterine contractility, such as infertility, endometriosis, and dysmenorrhea

    New electrohysterogram-based estimators of intrauterine pressure signal, tonus and contraction peak for non-invasive labor monitoring

    Full text link
    [EN] Background: Uterine activity monitoring is an essential part of managing the progress of pregnancy and labor. Although intrauterine pressure (IUP) is the only reliable method of estimating uterine mechanical activity, it is highly invasive. Since there is a direct relationship between the electrical and mechanical activity of uterine cells, surface electrohysterography (EHG) has become a noninvasive monitoring alternative. The Teager energy (TE) operator of the EHG signal has been used for IUP continuous pressure estimation, although its accuracy could be improved. We aimed to develop new optimized IUP estimation models for clinical application. Approach: We first considered enhancing the optimal estimation of IUP clinical features (maximum pressure and tonus) rather than optimizing the signal only (continuous pressure). An adaptive algorithm was also developed to deal with inter-patient variability. For each optimizing signal feature (continuous pressure, maximum pressure and tonus), individual (single patient), global (full database) and adaptive models were built to estimate the recorded IUP signal. The results were evaluated by computing the root mean square errors (RMSe): continuous pressure error (CPe), maximum pressure error (MPe) and tonus error (TOe). Main results: The continuous pressure global model yielded IUP estimates with Cpe = 14.61mm Hg, MPe = 29.17mm Hg and Toe = 7.8mm Hg. The adaptive models significantly reduced errors to CPe = 11.88, MPe = 16.02 and Toe = 5.61mm Hg. The EHG-based IUP estimates outperformed those from traditional tocographic recordings, which had significantly higher errors (CPe = 21.93, MPe = 26.97, and TOe = 13.96). Significance: Our results show that adaptive models yield better IUP estimates than the traditional approaches and provide the best balance of the different errors computed for a better assessment of the labor progress and maternal and fetal wellbeing.This research project was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (DPI2015-68397-R), and by the projects UPV_ FE-2018-C03 and GV/2018/104.Benalcazar-Parra, C.; Garcia-Casado, J.; Ye Lin, Y.; Alberola-Rubio, J.; López-Corral, A.; Perales Marin, AJ.; Prats-Boluda, G. (2019). New electrohysterogram-based estimators of intrauterine pressure signal, tonus and contraction peak for non-invasive labor monitoring. Physiological Measurement. 40(8):1-12. https://doi.org/10.1088/1361-6579/ab37dbS11240

    Characterization of uterine activity by electrohysterography

    Get PDF
    A growing number of pregnancies is complicated by miscarriage, preterm delivery, and birth defects, with consequent health problems later in life. It is therefore increasingly important to monitor the health status of mother and fetus, so as to permit timely medical intervention when acute health risks are detected. For timely recognition of complications, quantitative assessment of uterine activity can be fundamental during both pregnancy and delivery. During pregnancy, timely prediction of preterm delivery can improve the effectiveness of the required treatments. Unfortunately, the prognostic techniques employed in current obstetrical practice, namely, uterine contraction measurements using an elastic belt (external tocography), cervical change evaluation, and the use of biomarkers like fetal fibronectin, have been demonstrated to be inaccurate for the prediction of preterm delivery. In the last stage of pregnancy and during labor, contractions are routinely and constantly monitored. Especially when complications occur, e.g., when labor shows poor progress, quantitative assessment of uterine activity can guide the physician to choose a uterine contraction induction or augmentation, a cesarean section, or other therapies. Furthermore, monitoring the fetal heart response to the uterine activity (cardiotography) is widely used as a screening test for timely recognition of fetal distress (e.g. asphyxia). However, in current obstetrical practice, accurate quantitative assessment of the uterine contractions can be provided only invasively and during labor. The current golden standard for contraction monitoring, which is based on the direct internal uterine pressure (IUP) measurement by an intrauterine catheter, can be risky and its use is generally limited to very complicated deliveries. The contractile element of the uterus is the myometrium, which is composed of smooth muscle cells. Uterine contractions are caused by electrical activity in the form of action potentials (AP) that propagate through the myometrium cells. Electrohysterography is the measurement of the uterine electrical activity and can be performedby electrodes placed on the abdomen. Electrohysterographic (EHG) measurements are inexpensive and noninvasive. Moreover, it has been demonstrated that the noninvasively recorded EHG signal is representative of those APs that, by propagating from cell to cell, are the root cause of a uterine contraction. Therefore, in view of the limitation of current obstetrical practice, significant benefits could be expected from the introduction of EHG signal analysis for routine contraction monitoring. Previous studies highlighted the potential prognostic and diagnostic value of EHG signal analysis, but did not investigate the possibility of accurately estimating the IUP from noninvasive EHG recordings. Moreover, important issues like the effect of the tissues interposed between the uterus and the skin (volume conductor) on EHG recordings have not been studied. Besides, EHG signal interpretation has been typically based on single-channel measurements, while the use of multiple electrodes conveys additional information (e.g., distribution and dynamics of the electrical activation) that can possibly be predictive of delivery. In this thesis, we focus on the analysis of the EHG signal as an alternative to existing techniques for predicting preterm delivery and monitoring uterine contractions during both pregnancy and delivery. The main goal of this work is to contribute to the technical basis which is required for the introduction of electrohysterography in everyday clinical practice. A major part of this thesis investigates the possibility of using electrohysterography to replace invasive IUP measurements. A novel method for IUP estimation from EHG recordings is developed in the first part of this thesis. The estimates provided by the method are compared to the IUP invasively recorded on women during delivery and result in a root mean squared error (RMSE) with respect to the reference invasive IUP recording as low as 5 mmHg, which is comparable to the accuracy of the invasive golden standard. Another important objective of this thesis work is to contribute to the introduction of novel techniques for timely prediction of preterm delivery. As the spreading of electrical activity at the myometrium is the root cause of coordinated and effective contractions, i.e., contractions that are capable of pushing the fetus down into the birth canal ultimately leading to delivery, a multichannel analysis of the spatial propagation properties of the EHG signal could provide a fundamental contribution for predicting delivery. A thorough study of the EHG signal propagation properties is therefore carried out in this work. Parameters related to the EHG that are potentially predictive of delivery, such as the uterine area where the contraction originates (pacemaker area) or the distribution and dynamics of the EHG propagation vector, can be derived from the delay by which the signal is detected at multiple locations over the whole abdomen. To analyze the propagation of EHG signals on a large scale (cm), a method is designed for calculating the detection delay among the EHG signals recorded by by electrodes placed on the abdomen. Electrohysterographic (EHG) measurements are inexpensive and noninvasive. Moreover, it has been demonstrated that the noninvasively recorded EHG signal is representative of those APs that, by propagating from cell to cell, are the root cause of a uterine contraction. Therefore, in view of the limitation of current obstetrical practice, significant benefits could be expected from the introduction of EHG signal analysis for routine contraction monitoring. Previous studies highlighted the potential prognostic and diagnostic value of EHG signal analysis, but did not investigate the possibility of accurately estimating the IUP from noninvasive EHG recordings. Moreover, important issues like the effect of the tissues interposed between the uterus and the skin (volume conductor) on EHG recordings have not been studied. Besides, EHG signal interpretation has been typically based on single-channel measurements, while the use of multiple electrodes conveys additional information (e.g., distribution and dynamics of the electrical activation) that can possibly be predictive of delivery. In this thesis, we focus on the analysis of the EHG signal as an alternative to existing techniques for predicting preterm delivery and monitoring uterine contractions during both pregnancy and delivery. The main goal of this work is to contribute to the technical basis which is required for the introduction of electrohysterography in everyday clinical practice. A major part of this thesis investigates the possibility of using electrohysterography to replace invasive IUP measurements. A novel method for IUP estimation from EHG recordings is developed in the first part of this thesis. The estimates provided by the method are compared to the IUP invasively recorded on women during delivery and result in a root mean squared error (RMSE) with respect to the reference invasive IUP recording as low as 5 mmHg, which is comparable to the accuracy of the invasive golden standard. Another important objective of this thesis work is to contribute to the introduction of novel techniques for timely prediction of preterm delivery. As the spreading of electrical activity at the myometrium is the root cause of coordinated and effective contractions, i.e., contractions that are capable of pushing the fetus down into the birth canal ultimately leading to delivery, a multichannel analysis of the spatial propagation properties of the EHG signal could provide a fundamental contribution for predicting delivery. A thorough study of the EHG signal propagation properties is therefore carried out in this work. Parameters related to the EHG that are potentially predictive of delivery, such as the uterine area where the contraction originates (pacemaker area) or the distribution and dynamics of the EHG propagation vector, can be derived from the delay by which the signal is detected at multiple locations over the whole abdomen. To analyze the propagation of EHG signals on a large scale (cm), a method is designed for calculating the detection delay among the EHG signals recorded by multiple electrodes. Relative to existing interelectrode delay estimators, this method improves the accuracy of the delay estimates for interelectrode distances larger than 5-10 cm. The use of a large interelectrode distance aims at the assessment of the EHG propagation properties through the whole uterine muscle using a limited number of sensors. The method estimates values of velocity within the physiological range and highlights the upper part of the uterus as the most frequent (65%) pacemaker area during labor. Besides, our study suggests that more insight is needed on the effect that tissues interposed between uterus and skin (volume conductor) have on the EHG signal. With the aim of improving the current interpretation and measurement accuracy of EHG parameters with potential clinical relevance, such as the conduction velocity (CV), a volume conductor model for the EHG signal is introduced and validated. The intracellular AP at the myometrium is analytically modeled in the spatial domain by a 2-parameter exponential in the form of a Gamma variate function. The unknown atomical parameters of the volume conductor model are the thicknesses of the biological tissues interposed between the uterus and the abdominal surface. These model parameters can be measured by echography for validation. The EHG signal is recorded by an electrode matrix on women with contractions. In order to increase the spatial resolution of the EHG measurements and reduce the geometrical and electrical differences among the tissues below the recording locations, electrodes with a reduced surface and smaller interelectrode distance are needed relative to the previous studies on electrohysterography. The EHG signal is recorded, for the first time, by a 64-channel (8×8) high-density electrode grid, comprising 1 mm diameter electrodes with 4 mm interelectrode distance. The model parameters are estimated in the spatial frequency domain from the recorded EHG signal by a least mean square method. The model is validated by comparing the thickness of the biological tissues recorded by echography to the values estimated using the mathematical model. The agreement between the two measures (RMSE = 1 mm and correlation coefficient, R = 0.94) suggests the model to be representative of the underlying physiology. In the last part of this dissertation, the analysis of the EHG signal propagation focuses on the CV estimation of single APs. As on a large scale this parameter cannot be accurately derived, the propagation analysis is here carried out on a small scale (mm). Also for this analysis, the EHG signal is therefore recorded by a 3×3 cm2 high-density electrode grid containing 64 electrodes (8×8). A new method based on maximum likelihood estimation is then applied in two spatial dimensions to provide an accurate estimate of amplitude and direction of the AP CV. Simulation results prove the proposed method to be more robust to noise than the standard techniques used for other electrophysiological signals, leading to over 56% improvement of the RMS CV estimate accuracy. Furthermore, values of CV between 2 cm/s and 12 cm/s, which are in agreement with invasive and in-vitro measurements described in the literature, are obtained from real measurements on ten women in labor. In conclusion, this research provides a quantitative characterization of uterine contractions by EHG signal analysis. Based on an extensive validation, this thesis indicates that uterine contractions can be accurately monitored noninvasively by dedicated analysis of the EHG signal. Furthermore, our results open the way to new clinical studies and applications aimed at improving the understanding of the electrophysiological mechanisms leading to labor, possibly reducing the incidence of preterm delivery and improving the perinatal outcome

    Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination

    Full text link
    [EN] Although preterm labor is a major cause of neonatal death and often leaves health sequels in the survivors, there are no accurate and reliable clinical tools for preterm labor prediction. The Electrohysterogram (EHG) has arisen as a promising alternative that provides relevant information on uterine activity that could be useful in predicting preterm labor. In this work, we optimized and assessed the performance of the Dispersion Entropy (DispEn) metric and compared it to conventional Sample Entropy (SampEn) in EHG recordings to discriminate term from preterm deliveries. For this, we used the two public databases TPEHG and TPEHGT DS of EHG recordings collected from women during regular checkups. The 10th, 50th and 90th percentiles of entropy metrics were computed on whole (WBW) and fast wave high (FWH) EHG bandwidths, sweeping the DispEn and SampEn internal parameters to optimize term/preterm discrimination. The results revealed that for both the FWH and WBW bandwidths the best separability was reached when computing the 10th percentile, achieving a p-value (0.00007) for DispEn in FWH, c = 7 and m = 2, associated with lower complexity preterm deliveries, indicating that DispEn is a promising parameter for preterm labor prediction.This work was supported by the Spanish ministry of economy and competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and the Generalitat Valenciana (AICO/2019/220).Nieto-Del-Amor, F.; Ye Lin, Y.; Garcia-Casado, J.; Díaz-Martínez, MDA.; González Martínez, M.; Monfort-Ortiz, R.; Prats-Boluda, G. (2021). Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination. SCITEPRESS. 260-267. https://doi.org/10.5220/0010316602600267S26026

    Uterine contractions clustering based on surface electromyography: an input for pregnancy monitoring

    Get PDF
    Tese de mestrado em Bioestatística, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018Inicialmente a investigação da contratilidade uterina recorria à utilização de dois métodos: o tocograma externo e o cateter de pressão intrauterino. Ambos os métodos apresentam limitações ao nível da avaliação do risco de parto prematuro e na monitorização da gravidez. O EHG (Electrohisterograma) é um método alternativo ao tocograma externo e ao cateter de pressão intrauterino. Este método pode ser aplicado de forma invasiva no músculo uterino, ou de forma não invasiva através de elétrodos colocados no abdómen. O EHG tem sido considerado uma ferramenta adequada para a monitorização da gravidez e do parto. O índice de massa corporal tem um impacto quase impercetível no EHG, sendo esta uma das principais características deste método. O EHG pode também ser utilizado para identificar as mulheres que vão entrar em trabalho de parto e ainda auxiliar na tomada de decisão médica quanto à utilização da terapia tocolítica (antagonista da oxitocina), evitando deste modo a ingestão de medicação desnecessária e os consequentes efeitos secundários. Na literatura existem apenas cinco casos publicados em que foi realizada uma separação dos principais eventos do sinal EHG: contrações, movimentos fetais, ondas Alvarez e ondas LDBF (Longue Durée Basse Fréquence). Em três das publicações a separação dos eventos foi feita manualmente e nos restantes casos algoritmos, como redes neuronais, foram aplicados ao EHG. As ondas Alvarez e as Braxton-Hicks são as mais reconhecidas. As ondas Alvarez foram descritas pela primeira vez nos anos cinquenta e as Braxton-Hicks foram descritas pela primeira vez em 1872 sendo detetadas através de palpação. As ondas Alvarez são ocasionalmente sentidas pela mulher. Estas ondas estão localizadas numa pequena área do tecido uterino sem propagação e podem levar a contrações com maior intensidade e, consequentemente, ao parto pré-termo. As Braxton-Hicks são contrações ineficientes registadas a partir da 20ª semana de gravidez que se tornam mais frequentes e intensas com o decorrer da gravidez. Estas contrações são menos localizadas que as ondas Alvarez e, durante o parto, propagam-se por todo o tecido uterino num curto período de tempo. As Braxton-Hicks estão associadas a uma diminuição do ritmo cardíaco fetal. As ondas LDBF são contrações de longa duração associadas a hipertonia uterina, quando há contração do tecido uterino sem retorno ao relaxamento muscular, o que representa um risco na gravidez. Neste trabalho foram utilizadas duas bases de dados. Na base de dados da Islândia existem 122 registos de 45 mulheres, dos quais apenas 4 correspondem a partos pré-termo. Na base de dados TPEHG (Term-Preterm EHG) existem 300 registos, dos quais 38 correspondem a partos pré-termo. Neste trabalho foram escolhidos canais bipolares, visto que estes reduzem o ruído idêntico, como o ECG (Eletrocardiograma) materno ou movimentos respiratórios. Para ambas as bases de dados os sinais originais de EHG foram processados e filtrados. Na estimação espetral foram considerados dois métodos: paramétricos e não paramétricos. O método Welch foi escolhido pois representa um bom compromisso entre ambos. Este método foi utilizado para calcular o espectro de cada evento detetado no sinal EHG. Para detetar os eventos no sinal EHG foram considerados cinco métodos baseados na energia ou amplitude. O método Wavelet foi o escolhido pois após uma inspeção visual, este era o método que delineava melhor as contrações. Na base de dados da Islândia foram identificadas 3136 contrações e na TPEHG foram encontradas 4622 contrações. O objetivo principal desta tese é obter clusters de contrações detetadas no sinal EHG. No entanto, as contrações são séries temporais não estacionárias, e a sua classificação visual é inviável a longo termo e também difícil de aplicar na prática clínica. Existem vários parâmetros que podem ser extraídos do sinal EHG, mas o espectro das contrações foi o método escolhido visto que este representa o sinal EHG e tem sempre a mesma dimensão, independentemente da duração da contração. As distâncias espetrais têm sido utilizadas com sucesso no reconhecimento áudio. Neste trabalho foi realizada uma aplicação desse método ao processamento do EHG, no qual foram realizados os ajustes necessários. Para comparar os espectros foram estudadas 8 distâncias diferentes: Itakura-Saito, COSH, Itakura, Itakura simétrica, Kullback-Leibler, Jeffrey, Rényi e Jensen-Rényi. Apenas as distâncias simétricas foram selecionadas para um estudo mais detalhado visto que estas são, segundo a literatura, as distâncias mais adequadas aquando do clustering. Após comparação das distâncias simétricas, a divergência de Jeffrey foi a selecionada para a comparação dos espectros. Nesta tese foram avaliados três métodos diferentes de clustering: o linkage, o K-means e o K-medoids. O linkage é um método hierárquico. Os clusters que resultam do agrupamento hierárquico estão organizados numa estrutura chamada dendrograma. No agrupamento hierárquico, não é necessário predeterminar o número de clusters, o que torna este um método ideal na exploração dos dados. O K-means e o K-medoids são métodos de partição, nos quais os dados são separados em k clusters decididos previamente. Os clusters são definidos de forma a otimizar a função da distância. No algoritmo K-means, os clusters baseiam-se na proximidade entre si de acordo com uma distância predeterminada. A diferença entre o K-medoids e o K-means é que o K-medoids escolhe pontos de dados como centros, chamados de medoides, enquanto K-means usa centróides. Após uma comparação dos diferentes métodos de clustering foi escolhido neste trabalho foi o average linkage, visto que este apresentava melhores resultados quer na separação dos espectros quer na silhueta. É então apresentado um método inovador no qual se utiliza todo o espectro das contrações detetadas automaticamente no EHG para o clustering não supervisionado. Esta técnica é uma contribuição para a classificação automática das diferentes contrações, especialmente aquelas mais reconhecidas na literatura: Alvarez e Braxton-Hicks. Era expectável encontrar um cluster isolado com as ondas LDBF, visto que estas representam um risco para o feto. O principal objetivo era juntar num cluster os espectros semelhantes das contrações, e relacioná-lo com o respetivo tipo de contração. Essa tarefa foi concluída através da identificação positiva de Alvarez e Braxton-Hicks. O clustering forneceu ainda algumas pistas sobre ondas Alvarez que não foram encontradas com o algoritmo de deteção de contrações, situação para a qual um método alternativo é apresentado. É sugerido que as ondas Alvarez sejam detetadas com métodos baseados na frequência, como, por exemplo, a frequência instantânea, no entanto este método não foi desenvolvido neste trabalho. Em relação às ondas LDBF, estas foram encontradas no cluster das Braxton-Hicks. É sugerido que a deteção das ondas LDBF seja baseada na sua caraterística mais distinta: a longa duração. Verificou-se que os casos pré-termo e os registos pré-parto não ficaram isolados num cluster, não se tendo encontrado uma relação entre a idade gestacional e o tipo de contração. Conclui-se que as contrações mais curtas apresentam maior amplitude do que as contrações com maior duração. Baseado em estudos anteriores sobre a eletrofisiologia do útero, supõem-se que o início do trabalho de parto pré-termo e termo esteja associado a sequências específicas de diferentes tipos de contrações, nas quais as ondas Alvares desempenham um papel importante. As contrações identificadas como Alvarez e Braxton-Hicks não são usadas como tal na prática clínica apesar de a maioria das contrações detetadas pelo tocograma serem Braxton-Hicks. O interesse pelas ondas Alvarez diminuiu rapidamente visto que estas ondas são praticamente indetetáveis pelo método de referência de deteção de contrações: o tocograma. As capacidades e a resolução do EHG levaram à renovação do estudo das contrações mais subtis, incluindo as Alvarez. Este trabalho é uma contribuição para a investigação nesta área.An innovative technique is introduced wherein where an unsupervised clustering method using as feature the whole spectrum of automatically detected contractions on the EHG (Electrohysterogram) is presented as a contribution to the automatic classification of the different uterine contractions, at least those that have been most recognized in the literature: Alvarez and Braxton-Hicks. It was expected to also be able to cluster the LDBF (Longue Durée Basse Fréquence) components, as these pose a fetal risk. The main task was to have the spectral contractions descriptions clustered and linked to the respective contraction type. That task was completed with positive identification of the Alvarez and Braxton-Hicks. The clustering process also provided clues regarding the missed Alvarez waves in the contraction detection algorithm, for which an alternative technique is suggested but not developed in this work. Regarding the LDBF they were found in the Braxton-Hicks cluster. It is suggested the LDBF´s to be detected based in their most prominent feature: the long duration. It is presented the rationale behind the selection of a cost function to be used in the spectral distance’s algorithm. Spectral distances have been successfully used in audio recognition and this works represents an application to the EHG processing, for which the necessary adjustments have to be implemented. It was found that no single cluster pointed to the preterm cases, or indeed to the pre-labor subject recordings. It is hypothesized, based on previous studies in uterine electrophysiology, that the initiation of pre-term or term labor should be associated with triggering contraction sequences of different types, where the Alvarez waves play a major role. Alvarez and Braxton-Hicks, labeled as such, are not typically used in the clinical environment despite most of the Tocogram detected contractions being the latter. Alvarez waves are not usually detectable by the Tocogram. Alvarez were firstly detected invasively in the early fifties, and Braxton-Hicks in 1872 using routine palpation techniques. The interest in Alvarez components declined rapidly since being practically undetectable by the de facto reference in the contraction detection: the Tocogram. The EHG capabilities and resolution made it possible to revive the research on the most subtle uterine contractions, Alvarez included and this work is a contribution in this research area

    Noninvasive Estimation of the Electrohysterographic Action-Potential Conduction Velocity

    Full text link

    A Machine Learning System for Automatic Detection of Preterm Activity Using Artificial Neural Networks and Uterine Electromyography Data

    Get PDF
    Preterm births are babies born before 37 weeks of gestation. The premature delivery of babies is a major global health issue with those affected at greater risk of developing short and long-term complications. Therefore, a better understanding of why preterm births occur is needed. Electromyography is used to capture electrical activity in the uterus to help treat and understand the condition, which is time consuming and expensive. This has led to a recent interest in automated detection of the electromyography correlates of preterm activity. This paper explores this idea further using artificial neural networks to classify term and preterm records, using an open dataset containing 300 records of uterine electromyography signals. Our approach shows an improvement on existing studies with 94.56% for sensitivity, 87.83% for specificity, and 94% for the area under the curve with 9% global error when using the multilayer perceptron neural network trained using the Levenberg-Marquardt algorithm

    Electrohysterography in the diagnosis of preterm birth: a review

    Full text link
    This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at http://doi.org/10.1088/1361-6579/aaad56.[EN] Preterm birth (PTB) is one of the most common and serious complications in pregnancy. About 15 million preterm neonates are born every year, with ratios of 10-15% of total births. In industrialized countries, preterm delivery is responsible for 70% of mortality and 75% of morbidity in the neonatal period. Diagnostic means for its timely risk assessment are lacking and the underlying physiological mechanisms are unclear. Surface recording of the uterine myoelectrical activity (electrohysterogram, EHG) has emerged as a better uterine dynamics monitoring technique than traditional surface pressure recordings and provides information on the condition of uterine muscle in different obstetrical scenarios with emphasis on predicting preterm deliveries. Objective: A comprehensive review of the literature was performed on studies related to the use of the electrohysterogram in the PTB context. Approach: This review presents and discusses the results according to the different types of parameter (temporal and spectral, non-linear and bivariate) used for EHG characterization. Main results: Electrohysterogram analysis reveals that the uterine electrophysiological changes that precede spontaneous preterm labor are associated with contractions of more intensity, higher frequency content, faster and more organized propagated activity and stronger coupling of different uterine areas. Temporal, spectral, non-linear and bivariate EHG analyses therefore provide useful and complementary information. Classificatory techniques of different types and varying complexity have been developed to diagnose PTB. The information derived from these different types of EHG parameters, either individually or in combination, is able to provide more accurate predictions of PTB than current clinical methods. However, in order to extend EHG to clinical applications, the recording set-up should be simplified, be less intrusive and more robust-and signal analysis should be automated without requiring much supervision and yield physiologically interpretable results. Significance: This review provides a general background to PTB and describes how EHG can be used to better understand its underlying physiological mechanisms and improve its prediction. The findings will help future research workers to decide the most appropriate EHG features to be used in their analyses and facilitate future clinical EHG applications in order to improve PTB prediction.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under grant DPI2015-68397-R.Garcia-Casado, J.; Ye Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola Rubio, J.; Perales Marin, AJ. (2018). Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement. 39(2). https://doi.org/10.1088/1361-6579/aaad56S39

    Dynamic neural network architecture inspired by the immune algorithm to predict preterm deliveries in pregnant women

    Get PDF
    There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants is most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. There is a strong body of evidence emerging that suggests the analysis of uterine electrical signals, from the abdominal surface (Electrohysterography – EHG), could provide a viable way of diagnosing true labour and even predict preterm deliveries. This paper explores this idea further and presents a new dynamic self-organized network immune algorithm that classifies term and preterm records, using an open dataset containing 300 records (38 preterm and 262 term). Using the dataset, oversampling and cross validation techniques are evaluated against other similar studies. The proposed approach shows an improvement on existing studies with 89% sensitivity, 91% specificity, 90% positive predicted value, 90% negative predicted value, and an overall accuracy of 90%

    Prediction of Preterm Deliveries from EHG Signals Using Machine Learning

    Get PDF
    There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants are most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. In extreme cases, this can also lead to long-term conditions, such as cerebral palsy, mental retardation, learning difficulties, including poor health and growth. In the US alone, the societal and economic cost of preterm births, in 2005, was estimated to be $26.2 billion, per annum. In the UK, this value was close to £2.95 billion, in 2009. Many believe that a better understanding of why preterm births occur, and a strategic focus on prevention, will help to improve the health of children and reduce healthcare costs. At present, most methods of preterm birth prediction are subjective. However, a strong body of evidence suggests the analysis of uterine electrical signals (Electrohysterography), could provide a viable way of diagnosing true labour and predict preterm deliveries. Most Electrohysterography studies focus on true labour detection during the final seven days, before labour. The challenge is to utilise Electrohysterography techniques to predict preterm delivery earlier in the pregnancy. This paper explores this idea further and presents a supervised machine learning approach that classifies term and preterm records, using an open source dataset containing 300 records (38 preterm and 262 term). The synthetic minority oversampling technique is used to oversample the minority preterm class, and cross validation techniques, are used to evaluate the dataset against other similar studies. Our approach shows an improvement on existing studies with 96% sensitivity, 90% specificity, and a 95% area under the curve value with 8% global error using the polynomial classifier
    corecore