10,865 research outputs found

    Design of a new method for detection of occupancy in the smart home using an FBG sensor

    Get PDF
    This article introduces a new way of using a fibre Bragg grating (FBG) sensor for detecting the presence and number of occupants in the monitored space in a smart home (SH). CO2 sensors are used to determine the CO2 concentration of the monitored rooms in an SH. CO2 sensors can also be used for occupancy recognition of the monitored spaces in SH. To determine the presence of occupants in the monitored rooms of the SH, the newly devised method of CO2 prediction, by means of an artificial neural network (ANN) with a scaled conjugate gradient (SCG) algorithm using measurements of typical operational technical quantities (indoor temperature, relative humidity indoor and CO2 concentration in the SH) is used. The goal of the experiments is to verify the possibility of using the FBG sensor in order to unambiguously detect the number of occupants in the selected room (R104) and, at the same time, to harness the newly proposed method of CO2 prediction with ANN SCG for recognition of the SH occupancy status and the SH spatial location (rooms R104, R203, and R204) of an occupant. The designed experiments will verify the possibility of using a minimum number of sensors for measuring the non-electric quantities of indoor temperature and indoor relative humidity and the possibility of monitoring the presence of occupants in the SH using CO2 prediction by means of the ANN SCG method with ANN learning for the data obtained from only one room (R203). The prediction accuracy exceeded 90% in certain experiments. The uniqueness and innovativeness of the described solution lie in the integrated multidisciplinary application of technological procedures (the BACnet technology control SH, FBG sensors) and mathematical methods (ANN prediction with SCG algorithm, the adaptive filtration with an LMS algorithm) employed for the recognition of number persons and occupancy recognition of selected monitored rooms of SH.Web of Science202art. no. 39

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Multiwavelength fiber laser based on bidirectional lyot filter in conjunction with intensity dependent loss mechanism

    Get PDF
    We experimentally demonstrate a multiwavelength fiber laser (MWFL) based on bidirectional Lyot filter. A semiconductor optical amplifier (SOA) is used as the gain medium, while its combination with polarization controllers (PCs) and polarization beam combiner (PBC) induces intensity dependent loss (IDL) mechanism. The IDL mechanism acts as an intensity equalizer to flatten the multiwavelength spectrum, which can be obtained at a certain polarization state. Using different ratio of optical splitter has affected to multiwavelength flatness degradation. Subsequently, when we removed a polarizer in the setup, the extinction ratio (ER) is decreased. Ultimately, with two segments of polarization maintaining fiber (PMF), two channel spacings can be achieved due to splicing shift of 0° and 90°

    Prediction of local particle pollution level based on artificial neural network

    Get PDF
    Citizens eager to know the local pollution level to prevent from air pollution. The real-time measurement for everywhere is a very expensive way, a statistical model based on artificial neural network is applied in this research. This model can estimate particle pollution level with some influencing factors, including background pollution level, weather conditions, urban morphology and local pollution sources. The monitoring from regulatory monitoring sites is considered as the background level. The field measurements of 20 locations are conducted to feed the output layer of ANN model. The average relative error of prediction compared with measurement is 9.24% for PM10 and 18.90% for PM2.5

    The design of an indirect method for the human presence monitoring in the intelligent building

    Get PDF
    This article describes the design and verification of the indirect method of predicting the course of CO2 concentration (ppm) from the measured temperature variables Tindoor (degrees C) and the relative humidity rH(indoor) (%) and the temperature T-outdoor (degrees C) using the Artificial Neural Network (ANN) with the Bayesian Regulation Method (BRM) for monitoring the presence of people in the individual premises in the Intelligent Administrative Building (IAB) using the PI System SW Tool (PI-Plant Information enterprise information system). The CA (Correlation Analysis), the MSE (Root Mean Squared Error) and the DTW (Dynamic Time Warping) criteria were used to verify and classify the results obtained. Within the proposed method, the LMS adaptive filter algorithm was used to remove the noise of the resulting predicted course. In order to verify the method, two long-term experiments were performed, specifically from February 1 to February 28, 2015, from June 1 to June 28, 2015 and from February 8 to February 14, 2015. For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 92%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored IAB premises for monitoring. The designed indirect method of CO2 prediction has potential for reducing the investment and operating costs of the IAB in relation to the reduction of the number of implemented sensors in the IAB within the process of management of operational and technical functions in the IAB. The article also describes the design and implementation of the FEIVISUAL visualization application for mobile devices, which monitors the technological processes in the IAB. This application is optimized for Android devices and is platform independent. The application requires implementation of an application server that communicates with the data server and the application developed. The data of the application developed is obtained from the data storage of the PI System via a PI Web REST API (Application Programming Integration) client.Web of Science8art. no. 2
    corecore