72 research outputs found

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Decision support continuum paradigm for cardiovascular disease: Towards personalized predictive models

    Get PDF
    Clinical decision making is a ubiquitous and frequent task physicians make in their daily clinical practice. Conventionally, physicians adopt a cognitive predictive modelling process (i.e. knowledge and experience learnt from past lecture, research, literature, patients, etc.) for anticipating or ascertaining clinical problems based on clinical risk factors that they deemed to be most salient. However, with the inundation of health data and the confounding characteristics of diseases, more effective clinical prediction approaches are required to address these challenges. Approximately a few century ago, the first major transformation of medical practice took place as science-based approaches emerged with compelling results. Now, in the 21st century, new advances in science will once again transform healthcare. Data science has been postulated as an important component in this healthcare reform and has received escalating interests for its potential for ‘personalizing’ medicine. The key advantages of having personalized medicine include, but not limited to, (1) more effective methods for disease prevention, management and treatment, (2) improved accuracy for clinical diagnosis and prognosis, (3) provide patient-oriented personal health plan, and (4) cost containment. In view of the paramount importance of personalized predictive models, this thesis proposes 2 novel learning algorithms (i.e. an immune-inspired algorithm called the Evolutionary Data-Conscious Artificial Immune Recognition System, and a neural-inspired algorithm called the Artificial Neural Cell System for classification) and 3 continuum-based paradigms (i.e. biological, time and age continuum) for enhancing clinical prediction. Cardiovascular disease has been selected as the disease under investigation as it is an epidemic and major health concern in today’s world. We believe that our work has a meaningful and significant impact to the development of future healthcare system and we look forward to the wide adoption of advanced medical technologies by all care centres in the near future.Open Acces

    Modelado robusto para la extracción de información en entornos biofísicos y críticos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 12/07/2018The era of information and Big Data is an environment where multiple devices, always connected, generate huge volumes of information (paradigm of the Internet of Things). This paradigm is present in different areas: the Smart Cities, sport tracking, lifestyle, or health. The goal of this thesis is the development and implementation of a Robust predictive modeling methodology using low cost wearable devices in biophysical and critical scenarios. In this manuscript we present a multilevel architecture that covers from the on-node data processing, up to the data management in Data Centers. The methodology applies energy aware optimization techniques at each level of the network. And the decision system makes use of data from different sources leading to expert decision system...La era de la información y el Big Data, se sustenta en un entorno en el que múltiples dispositivos, siempre conectados, generan ingentes volúmenes de información (paradigma del Internet de las Cosas). Este paradigma ha llegado diversos entornos: las denominadas ciudades inteligentes, monitorización deportiva, estilo de vida, o salud. El objetivo de esta tesis es el desarrollo e implementación de una metodología de modelado predictivo robusto mediante dispositivos wearable de bajo coste en entornos biofísicos y críticos. A lo largo de este manuscrito se presenta una arquitectura multinivel que abarca desde el tratamiento de los datos en los dispositivos sensores hasta el manejo de éstos en centros de datos. La metodología cubre la optimización energética a todos los niveles con consciencia del estado de la red. Y el sistema de decisión hace uso de datos de distintas fuentes para conformar un sistema experto de decisión...Fac. de InformáticaTRUEunpu

    Pertanika Journal of Science & Technology

    Get PDF

    Process Modeling Optimization in Additive Manufacturing Using Artificial Neural Networks

    Get PDF
    The need for production has roots in human life and its history. This date back to primitive days of human life, where he or she had to apply surrounding materials in order to manufacture the tools necessary for survival and durability against any insecurity. This was legitimizing the use of any means in order to obtain the tools and reach the goals at any cost. However, with human development primarily within the knowledge and understanding domain and also with the desire of humanity for best, expectations have risen. This was the time not only the cost mattered but also the simplicity of design, massive production, and diversity, less waste, autonomy, and implementation within a shorter time gained a higher momentum. On the other hand, the conventional manufacturing method was based on subtractive manufacturing with cutting and eliminating the unwanted sections or parts of an object. The disadvantage of such a method is that it requires a complicated production process design and is accompanied by waste. However, with the rise of additive manufacturing and three-dimensional printing equipment back in the 1980s, it became possible to build parts which could have almost any shape or geometry. Moreover, this also empowered the possibility of using digital and 3D models built by computer-aided design software. Simultaneously, on the other side, the foundation and application of artificial intelligence were maturing. This was due to the demand for machines to assist human beings in the domain of knowledge reasoning, learning, and planning. These were the pillars for making machines autonomous and to benefit from such features. Accordingly, this research work studies and overviews the applications and techniques of machine learning and artificial intelligence in the domain of additive manufacturing. It aims to determine the interaction of influential parameters on the process and to find the best solutions for improving the quality and mechanical features of manufactured parts. Moreover, this research tends to enable the experts to grasp a better understanding of AM process during manufacturing and additionally intends to infuse the experts' knowledge in additive manufacturing field utilizing the artificial neural network and finally generate a model with the ability of prediction and selection for promising results

    Special oils for halal and safe cosmetics

    Get PDF
    Three types of non conventional oils were extracted, analyzed and tested for toxicity. Date palm kernel oil (DPKO), mango kernel oil (MKO) and Ramputan seed oil (RSO). Oil content for tow cultivars of dates Deglect Noor and Moshkan was 9.67% and 7.30%, respectively. The three varieties of mango were found to contain about 10% oil in average. The red yellow types of Ramputan were found to have 11 and 14% oil, respectively. The phenolic compounds in DPKO, MKO and RSO were 0.98, 0.88 and 0.78 mg/ml Gallic acid equivalent, respectively. Oils were analyzed for their fatty acid composition and they are rich in oleic acid C18:1 and showed the presence of (dodecanoic acid) lauric acid C12:0, which reported to appear some antimicrobial activities. All extracted oils, DPKO, MKO and RSO showed no toxic effect using prime shrimp bioassay. Since these oils are stable, melt at skin temperature, have good lubricity and are great source of essential fatty acids; they could be used as highly moisturizing, cleansing and nourishing oils because of high oleic acid content. They are ideal for use in such halal cosmetics such as Science, Engineering and Technology 75 skin care and massage, hair-care, soap and shampoo products
    corecore