55 research outputs found

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    Information Extraction from Text for Improving Research on Small Molecules and Histone Modifications

    Get PDF
    The cumulative number of publications, in particular in the life sciences, requires efficient methods for the automated extraction of information and semantic information retrieval. The recognition and identification of information-carrying units in text – concept denominations and named entities – relevant to a certain domain is a fundamental step. The focus of this thesis lies on the recognition of chemical entities and the new biological named entity type histone modifications, which are both important in the field of drug discovery. As the emergence of new research fields as well as the discovery and generation of novel entities goes along with the coinage of new terms, the perpetual adaptation of respective named entity recognition approaches to new domains is an important step for information extraction. Two methodologies have been investigated in this concern: the state-of-the-art machine learning method, Conditional Random Fields (CRF), and an approximate string search method based on dictionaries. Recognition methods that rely on dictionaries are strongly dependent on the availability of entity terminology collections as well as on its quality. In the case of chemical entities the terminology is distributed over more than 7 publicly available data sources. The join of entries and accompanied terminology from selected resources enables the generation of a new dictionary comprising chemical named entities. Combined with the automatic processing of respective terminology – the dictionary curation – the recognition performance reached an F1 measure of 0.54. That is an improvement by 29 % in comparison to the raw dictionary. The highest recall was achieved for the class of TRIVIAL-names with 0.79. The recognition and identification of chemical named entities provides a prerequisite for the extraction of related pharmacological relevant information from literature data. Therefore, lexico-syntactic patterns were defined that support the automated extraction of hypernymic phrases comprising pharmacological function terminology related to chemical compounds. It was shown that 29-50 % of the automatically extracted terms can be proposed for novel functional annotation of chemical entities provided by the reference database DrugBank. Furthermore, they are a basis for building up concept hierarchies and ontologies or for extending existing ones. Successively, the pharmacological function and biological activity concepts obtained from text were included into a novel descriptor for chemical compounds. Its successful application for the prediction of pharmacological function of molecules and the extension of chemical classification schemes, such as the the Anatomical Therapeutic Chemical (ATC), is demonstrated. In contrast to chemical entities, no comprehensive terminology resource has been available for histone modifications. Thus, histone modification concept terminology was primary recognized in text via CRFs with a F1 measure of 0.86. Subsequent, linguistic variants of extracted histone modification terms were mapped to standard representations that were organized into a newly assembled histone modification hierarchy. The mapping was accomplished by a novel developed term mapping approach described in the thesis. The combination of term recognition and term variant resolution builds up a new procedure for the assembly of novel terminology collections. It supports the generation of a term list that is applicable in dictionary-based methods. For the recognition of histone modification in text it could be shown that the named entity recognition method based on dictionaries is superior to the used machine learning approach. In conclusion, the present thesis provides techniques which enable an enhanced utilization of textual data, hence, supporting research in epigenomics and drug discovery

    Gene Regulatory Network Inference Using Machine Learning Techniques

    Get PDF
    Systems Biology is a field that models complex biological systems in order to better understand the working of cells and organisms. One of the systems modeled is the gene regulatory network that plays the critical role of controlling an organism's response to changes in its environment. Ideally, we would like a model of the complete gene regulatory network. In recent years, several advances in technology have permitted the collection of an unprecedented amount and variety of data such as genomes, gene expression data, time-series data, and perturbation data. This has stimulated research into computational methods that reconstruct, or infer, models of the gene regulatory network from the data. Many solutions have been proposed, yet there remain open challenges in utilising the range of available data as it is inherently noisy, and must be integrated by the inference techniques. The thesis seeks to contribute to this discourse by investigating challenges of performance, scale, and data integration. We propose a new algorithm BENIN that views network inference as feature selection to address issues of scale, that uses elastic net regression for improved performance, and adapts elastic net to integrate different types of biological data. The BENIN algorithm is benchmarked on a synthetic dataset from the DREAM4 challenge, and on real expression data for the human HeLa cell cycle. On the DREAM4 dataset BENIN out-performed all DREAM4 competitors on the size 100 subchallenge, and is also competitive with more recent state-of-the-art methods. Moreover, on the HeLa cell cycle data, BENIN could infer known regulatory interactions and propose new interactions that warrant further experimental investigation. Keys words: gene regulatory network, network inference, feature selection, elastic net regression

    Consensus Network Inference of Microarray Gene Expression Data

    Get PDF
    Genetic and protein interactions are essential to regulate cellular machinery. Their identification has become an important aim of systems biology research. In recent years, a variety of computational network inference algorithms have been employed to reconstruct gene regulatory networks from post-genomic data. However, precisely predicting these regulatory networks remains a challenge. We began our study by assessing the ability of various network inference algorithms to accurately predict gene regulatory interactions using benchmark simulated datasets. It was observed from our analysis that different algorithms have strengths and weaknesses when identifying regulatory networks, with a gene-pair interaction (edge) predicted by one algorithm not always necessarily consistent with the other. An edge not predicted by most inference algorithms may be an important one, and should not be missed. The naïve consensus (intersection) method is perhaps the most conservative approach and can be used to address this concern by extracting the edges consistently predicted across all inference algorithms; however, it lacks credibility as it does not provide a quantifiable measure for edge weights. Existing quantitative consensus approaches, such as the inverse-variance weighted method (IVWM) and the Borda count election method (BCEM), have been previously implemented to derive consensus networks from diverse datasets. However, the former method was biased towards finding local solutions in the whole network, and the latter considered species diversity to build the consensus network. In this thesis we proposed a novel consensus approach, in which we used Fishers Combined Probability Test (FCPT) to combine the statistical significance values assigned to each network edge by a number of different networking algorithms to produce a consensus network. We tested our method by applying it to a variety of in silico benchmark expression datasets of different dimensions and evaluated its performance against individual inference methods, Bayesian models and also existing qualitative and quantitative consensus techniques. We also applied our approach to real experimental data from the yeast (S. cerevisiae) network as this network has been comprehensively elucidated previously. Our results demonstrated that the FCPT-based consensus method outperforms single algorithms in terms of robustness and accuracy. In developing the consensus approach, we also proposed a scoring technique that quantifies biologically meaningful hierarchical modular networks.University of Exeter studentshi

    A diversity-aware computational framework for systems biology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore